aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2009-02-15 21:36:21 +0000
committerdos-reis <gdr@axiomatics.org>2009-02-15 21:36:21 +0000
commit54c2b07353f228554b92269a9a4e688683ae85d6 (patch)
tree846dd35b996287dcc63bbef1ab70f94c4eb99211 /src/share/algebra/browse.daase
parent79f5a19fba15519dfa7fe82f4dd1f0e91652cded (diff)
downloadopen-axiom-54c2b07353f228554b92269a9a4e688683ae85d6.tar.gz
* algebra/data.spad.pamphlet (ByteBuffer): Tidy. Manage size
explicitly. * algebra/net.spad.pamphlet (writeBytes!$InetClientStreamSocket): Convert buffer to array before calling VM function. (readBytes!$InetClientStreamSocket): Likewise. * interp/sys-utility.boot (makeByteBuffer): Don't ask for fill pointers.
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase1278
1 files changed, 639 insertions, 639 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index ca8b2a89..62771912 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2282814 . 3443021571)
+(2282835 . 3443721767)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4404 . T) (-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4400 . T) (-4405 . T) (-4399 . T))
+((-4405 . T) (-4403 . T) (-4402 . T) ((-4410 "*") . T) (-4401 . T) (-4406 . T) (-4400 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3191)
+(-32 R -3195)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4407)))
+((|HasAttribute| |#1| (QUOTE -4408)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4407 . T) (-4408 . T))
+((-4408 . T) (-4409 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,17 +82,17 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3191 UP UPUP -2995)
+(-40 -3195 UP UPUP -3593)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4400 |has| (-407 |#2|) (-363)) (-4405 |has| (-407 |#2|) (-363)) (-4399 |has| (-407 |#2|) (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4032 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4032 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4032 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-563)))) (-4032 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
-(-41 R -3191)
+((-4401 |has| (-407 |#2|) (-363)) (-4406 |has| (-407 |#2|) (-363)) (-4400 |has| (-407 |#2|) (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4034 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4034 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4034 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-563)))) (-4034 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
+(-41 R -3195)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))))
@@ -106,23 +106,23 @@ NIL
((|HasCategory| |#1| (QUOTE (-307))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4404 |has| |#1| (-555)) (-4402 . T) (-4401 . T))
+((-4405 |has| |#1| (-555)) (-4403 . T) (-4402 . T))
((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4407 . T) (-4408 . T))
-((-4032 (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|))))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))))
+((-4408 . T) (-4409 . T))
+((-4034 (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|))))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
@@ -130,7 +130,7 @@ NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3191)
+(-54 |Base| R -3195)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4407 . T) (-4408 . T))
+((-4408 . T) (-4409 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
-(-61 -3348)
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+(-61 -3352)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3348)
+(-62 -3352)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -3348)
+(-63 -3352)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3348)
+(-64 -3352)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -3348)
+(-65 -3352)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3348)
+(-66 -3352)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -3348)
+(-67 -3352)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -3348)
+(-68 -3352)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3348)
+(-69 -3352)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -3348)
+(-70 -3352)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -3348)
+(-71 -3352)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -3348)
+(-72 -3352)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -3348)
+(-73 -3352)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -3348)
+(-74 -3352)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -3348)
+(-77 -3352)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -3348)
+(-78 -3352)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -3348)
+(-79 -3352)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3348)
+(-80 -3352)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3348)
+(-81 -3352)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -3348)
+(-82 -3352)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3348)
+(-83 -3352)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3348)
+(-84 -3352)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3348)
+(-85 -3352)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3348)
+(-86 -3352)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -3348)
+(-87 -3352)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -3348)
+(-88 -3352)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -3348)
+(-89 -3352)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-363))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4407 . T))
+((-4408 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4407 . T) ((-4409 "*") . T) (-4408 . T) (-4404 . T) (-4402 . T) (-4401 . T) (-4400 . T) (-4405 . T) (-4399 . T) (-4398 . T) (-4397 . T) (-4396 . T) (-4395 . T) (-4403 . T) (-4406 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4394 . T))
+((-4408 . T) ((-4410 "*") . T) (-4409 . T) (-4405 . T) (-4403 . T) (-4402 . T) (-4401 . T) (-4406 . T) (-4400 . T) (-4399 . T) (-4398 . T) (-4397 . T) (-4396 . T) (-4404 . T) (-4407 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4395 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4409 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4410 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4407 . T))
+((-4408 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4032 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4034 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-858)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -388,22 +388,22 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-115 -3191 UP)
+(-115 -3195 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-905))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1018))) (|HasCategory| (-116 |#1|) (QUOTE (-816))) (-4032 (|HasCategory| (-116 |#1|) (QUOTE (-816))) (|HasCategory| (-116 |#1|) (QUOTE (-846)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (QUOTE (-1144))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-905))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-147))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-116 |#1|) (QUOTE (-1018))) (|HasCategory| (-116 |#1|) (QUOTE (-816))) (-4034 (|HasCategory| (-116 |#1|) (QUOTE (-816))) (|HasCategory| (-116 |#1|) (QUOTE (-846)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (QUOTE (-1144))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-116 |#1|) (QUOTE (-233))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-307))) (|HasCategory| (-116 |#1|) (QUOTE (-545))) (|HasCategory| (-116 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-116 |#1|) (QUOTE (-905)))) (|HasCategory| (-116 |#1|) (QUOTE (-145)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)))
+((|HasAttribute| |#1| (QUOTE -4409)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,20 +430,20 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4407 . T) (-4408 . T))
+((-4408 . T) (-4409 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-128)
-((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-4032 (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1093)))) (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))))
+((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129)))))) (-4034 (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-129) (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1093)))) (|HasCategory| (-129) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-129) (QUOTE (-1093))) (|HasCategory| (-129) (LIST (QUOTE -309) (QUOTE (-129))))))
(-129)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -466,13 +466,13 @@ NIL
NIL
(-134)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4409 "*") . T))
+(((-4410 "*") . T))
NIL
-(-135 |minix| -3304 S T$)
+(-135 |minix| -3308 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-136 |minix| -3304 R)
+(-136 |minix| -3308 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -494,8 +494,8 @@ NIL
NIL
(-141)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4407 . T) (-4397 . T) (-4408 . T))
-((-4032 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+((-4408 . T) (-4398 . T) (-4409 . T))
+((-4034 (-12 (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-368))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
(-142 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -510,7 +510,7 @@ NIL
NIL
(-145)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-146 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -518,9 +518,9 @@ NIL
NIL
(-147)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4404 . T))
+((-4405 . T))
NIL
-(-148 -3191 UP UPUP)
+(-148 -3195 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -531,14 +531,14 @@ NIL
(-150 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasAttribute| |#1| (QUOTE -4407)))
+((|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasAttribute| |#1| (QUOTE -4408)))
(-151 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-152 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4402 . T) (-4401 . T) (-4404 . T))
+((-4403 . T) (-4402 . T) (-4405 . T))
NIL
(-153)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -560,7 +560,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-158 R -3191)
+(-158 R -3195)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -591,10 +591,10 @@ NIL
(-165 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4403)) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-846))))
+((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasAttribute| |#2| (QUOTE -4407)) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-846))))
(-166 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4400 -4032 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4403 |has| |#1| (-6 -4403)) (-4406 |has| |#1| (-6 -4406)) (-1413 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 -4034 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4404 |has| |#1| (-6 -4404)) (-4407 |has| |#1| (-6 -4407)) (-1413 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-167 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -606,8 +606,8 @@ NIL
NIL
(-169 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4400 -4032 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4403 |has| |#1| (-6 -4403)) (-4406 |has| |#1| (-6 -4406)) (-1413 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-824)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1193)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| |#1| (QUOTE (-1054))) (-12 (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasAttribute| |#1| (QUOTE -4403)) (|HasAttribute| |#1| (QUOTE -4406)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-349)))))
+((-4401 -4034 (|has| |#1| (-555)) (-12 (|has| |#1| (-307)) (|has| |#1| (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4404 |has| |#1| (-6 -4404)) (-4407 |has| |#1| (-6 -4407)) (-1413 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-368)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-824)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1193)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-905))))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| |#1| (QUOTE (-1054))) (-12 (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-1193)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-233))) (-12 (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasAttribute| |#1| (QUOTE -4407)) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-349)))))
(-170 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -618,7 +618,7 @@ NIL
NIL
(-172)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-173)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -626,7 +626,7 @@ NIL
NIL
(-174 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4409 "*") . T) (-4400 . T) (-4405 . T) (-4399 . T) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") . T) (-4401 . T) (-4406 . T) (-4400 . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-175)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -680,7 +680,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Symbol|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
-(-188 R -3191)
+(-188 R -3195)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -788,23 +788,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-215 -3191 UP UPUP R)
+(-215 -3195 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-216 -3191 FP)
+(-216 -3195 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-217)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4032 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4034 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
(-218)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-219 R -3191)
+(-219 R -3195)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -818,19 +818,19 @@ NIL
NIL
(-222 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-223 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4404 . T))
+((-4405 . T))
NIL
-(-224 R -3191)
+(-224 R -3195)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-225)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-1403 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-1402 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-226)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -838,15 +838,15 @@ NIL
NIL
(-227 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4409 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-228 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-229 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-230 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
@@ -854,7 +854,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))))
(-231 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-232 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -862,36 +862,36 @@ NIL
NIL
(-233)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-234 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4407)))
+((|HasAttribute| |#1| (QUOTE -4408)))
(-235 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-236)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-237 S -3304 R)
+(-237 S -3308 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasAttribute| |#3| (QUOTE -4404)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1093))))
-(-238 -3304 R)
+((|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasAttribute| |#3| (QUOTE -4405)) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1093))))
+(-238 -3308 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T))
+((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T))
NIL
-(-239 -3304 A B)
+(-239 -3308 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-240 -3304 R)
+(-240 -3308 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4032 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4032 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4034 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4034 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
(-241)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -902,7 +902,7 @@ NIL
NIL
(-243)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4400 . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-244 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -910,16 +910,16 @@ NIL
NIL
(-245 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-246 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-247 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-555)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-905))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-248)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -930,23 +930,23 @@ NIL
NIL
(-250 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4404 -4032 (-2190 (|has| |#4| (-1045)) (|has| |#4| (-233))) (-2190 (|has| |#4| (-1045)) (|has| |#4| (-896 (-1169)))) (|has| |#4| (-6 -4404)) (-2190 (|has| |#4| (-1045)) (|has| |#4| (-636 (-563))))) (-4401 |has| |#4| (-1045)) (-4402 |has| |#4| (-1045)) ((-4409 "*") |has| |#4| (-172)) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#4| (QUOTE (-363))) (-4032 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1045)))) (-4032 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (QUOTE (-789))) (-4032 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (QUOTE (-844)))) (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (QUOTE (-172))) (-4032 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-722)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-789)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-844)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-4032 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-722))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4032 (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1093)))) (-4032 (|HasAttribute| |#4| (QUOTE -4404)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))))
+((-4405 -4034 (-2188 (|has| |#4| (-1045)) (|has| |#4| (-233))) (-2188 (|has| |#4| (-1045)) (|has| |#4| (-896 (-1169)))) (|has| |#4| (-6 -4405)) (-2188 (|has| |#4| (-1045)) (|has| |#4| (-636 (-563))))) (-4402 |has| |#4| (-1045)) (-4403 |has| |#4| (-1045)) ((-4410 "*") |has| |#4| (-172)) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#4| (QUOTE (-363))) (-4034 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-1045)))) (-4034 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-363)))) (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (QUOTE (-789))) (-4034 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (QUOTE (-844)))) (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (QUOTE (-172))) (-4034 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-172)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-233)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-363)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-368)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-722)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-789)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-844)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-722))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-789))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-844))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-4034 (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (|HasCategory| |#4| (QUOTE (-722))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4034 (|HasCategory| |#4| (QUOTE (-1045))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (QUOTE (-1093)))) (-4034 (|HasAttribute| |#4| (QUOTE -4405)) (-12 (|HasCategory| |#4| (QUOTE (-233))) (|HasCategory| |#4| (QUOTE (-1045)))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#4| (QUOTE (-1045))) (|HasCategory| |#4| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#4| (QUOTE (-131))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))))
(-251 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4404 -4032 (-2190 (|has| |#3| (-1045)) (|has| |#3| (-233))) (-2190 (|has| |#3| (-1045)) (|has| |#3| (-896 (-1169)))) (|has| |#3| (-6 -4404)) (-2190 (|has| |#3| (-1045)) (|has| |#3| (-636 (-563))))) (-4401 |has| |#3| (-1045)) (-4402 |has| |#3| (-1045)) ((-4409 "*") |has| |#3| (-172)) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#3| (QUOTE (-363))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-4032 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-722))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4032 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (-4032 (|HasAttribute| |#3| (QUOTE -4404)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
+((-4405 -4034 (-2188 (|has| |#3| (-1045)) (|has| |#3| (-233))) (-2188 (|has| |#3| (-1045)) (|has| |#3| (-896 (-1169)))) (|has| |#3| (-6 -4405)) (-2188 (|has| |#3| (-1045)) (|has| |#3| (-636 (-563))))) (-4402 |has| |#3| (-1045)) (-4403 |has| |#3| (-1045)) ((-4410 "*") |has| |#3| (-172)) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#3| (QUOTE (-363))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-4034 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-722))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4034 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (-4034 (|HasAttribute| |#3| (QUOTE -4405)) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
(-252 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-233))))
(-253 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
NIL
(-254 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4407 . T) (-4408 . T))
+((-4408 . T) (-4409 . T))
NIL
(-255)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -986,8 +986,8 @@ NIL
NIL
(-264 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-265 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1032,11 +1032,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-276 R -3191)
+(-276 R -3195)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-277 R -3191)
+(-277 R -3195)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1058,7 +1058,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))))
(-282 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-283 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1079,18 +1079,18 @@ NIL
(-287 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)))
+((|HasAttribute| |#1| (QUOTE -4409)))
(-288 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-289 S R |Mod| -2472 -3164 |exactQuo|)
+(-289 S R |Mod| -4219 -4300 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-290)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4400 . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-291)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1106,21 +1106,21 @@ NIL
NIL
(-294 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4404 -4032 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4401 |has| |#1| (-1045)) (-4402 |has| |#1| (-1045)))
-((|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722)))) (|HasCategory| |#1| (QUOTE (-473))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-1093)))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-302))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-4032 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722)))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-172))))
+((-4405 -4034 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4402 |has| |#1| (-1045)) (-4403 |has| |#1| (-1045)))
+((|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722)))) (|HasCategory| |#1| (QUOTE (-473))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-1093)))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-302))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-473)))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722)))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-172))))
(-295 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
(-296)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-297 -3191 S)
+(-297 -3195 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-298 E -3191)
+(-298 E -3195)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1158,7 +1158,7 @@ NIL
NIL
(-307)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-308 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1168,7 +1168,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-310 -3191)
+(-310 -3195)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1182,8 +1182,8 @@ NIL
NIL
(-313 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1018))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (-4032 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1144))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846))) (-12 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145)))) (-4032 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145))))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1018))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (-4034 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-816))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-1144))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-233))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -309) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (LIST (QUOTE -286) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1243) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-307))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-545))) (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-846))) (-12 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145)))) (-4034 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-145))) (-12 (|HasCategory| (-1243 |#1| |#2| |#3| |#4|) (QUOTE (-905))) (|HasCategory| $ (QUOTE (-145))))))
(-314 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1194,9 +1194,9 @@ NIL
NIL
(-316 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4404 -4032 (-2190 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (-12 (|has| |#1| (-555)) (-4032 (-2190 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (|has| |#1| (-1045)) (|has| |#1| (-473)))) (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) ((-4409 "*") |has| |#1| (-555)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-555)) (-4399 |has| |#1| (-555)))
-((-4032 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1105)))) (-4032 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))))) (-4032 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1105)))) (-4032 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))))) (-4032 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563)))))
-(-317 R -3191)
+((-4405 -4034 (-2188 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (-12 (|has| |#1| (-555)) (-4034 (-2188 (|has| |#1| (-1045)) (|has| |#1| (-636 (-563)))) (|has| |#1| (-1045)) (|has| |#1| (-473)))) (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) ((-4410 "*") |has| |#1| (-555)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-555)) (-4400 |has| |#1| (-555)))
+((-4034 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1105)))) (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-1045)))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1105)))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))))) (-4034 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1105)))) (-4034 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))))) (-4034 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#1| (QUOTE (-1045)))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1105))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563)))))
+(-317 R -3195)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1206,8 +1206,8 @@ NIL
NIL
(-319 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
(-320 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1218,7 +1218,7 @@ NIL
NIL
(-322 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
((|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-788))))
(-323 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1234,19 +1234,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))))
(-326 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-327 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
-(-328 S -3191)
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+(-328 S -3195)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))))
-(-329 -3191)
+(-329 -3195)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-330)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1264,15 +1264,15 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-334 S -3191 UP UPUP R)
+(-334 S -3195 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-335 -3191 UP UPUP R)
+(-335 -3195 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-336 -3191 UP UPUP R)
+(-336 -3195 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1286,32 +1286,32 @@ NIL
NIL
(-339 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-379)))) (|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563)))))
(-340 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-341 S -3191 UP UPUP)
+(-341 S -3195 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-363))))
-(-342 -3191 UP UPUP)
+(-342 -3195 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4400 |has| (-407 |#2|) (-363)) (-4405 |has| (-407 |#2|) (-363)) (-4399 |has| (-407 |#2|) (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 |has| (-407 |#2|) (-363)) (-4406 |has| (-407 |#2|) (-363)) (-4400 |has| (-407 |#2|) (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-343 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
(-344 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-345 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-346 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1326,33 +1326,33 @@ NIL
NIL
(-349)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-350 R UP -3191)
+(-350 R UP -3195)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-351 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
(-352 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-353 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-354 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (|HasCategory| (-906 |#1|) (QUOTE (-145))) (|HasCategory| (-906 |#1|) (QUOTE (-368)))) (|HasCategory| (-906 |#1|) (QUOTE (-147))) (|HasCategory| (-906 |#1|) (QUOTE (-368))) (|HasCategory| (-906 |#1|) (QUOTE (-145))))
(-355 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
-(-356 -3191 GF)
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+(-356 -3195 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1360,21 +1360,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-358 -3191 FP FPP)
+(-358 -3195 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-359 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-145))))
(-360 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-361 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-362 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1382,7 +1382,7 @@ NIL
NIL
(-363)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-364 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1398,7 +1398,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-555))))
(-367 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4404 |has| |#1| (-555)) (-4402 . T) (-4401 . T))
+((-4405 |has| |#1| (-555)) (-4403 . T) (-4402 . T))
NIL
(-368)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1410,7 +1410,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-363))))
(-370 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-371 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1419,14 +1419,14 @@ NIL
(-372 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))))
+((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))))
(-373 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4407 . T))
+((-4408 . T))
NIL
(-374 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4402 . T) (-4401 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4403 . T) (-4402 . T))
NIL
(-375 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1438,7 +1438,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))))
(-377 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4404 . T))
+((-4405 . T))
NIL
(-378 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1446,7 +1446,7 @@ NIL
NIL
(-379)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4390 . T) (-4398 . T) (-1403 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4391 . T) (-4399 . T) (-1402 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-380 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1454,11 +1454,11 @@ NIL
NIL
(-381 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
((|HasCategory| |#1| (QUOTE (-172))))
(-382 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
NIL
(-383)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1470,7 +1470,7 @@ NIL
NIL
(-385 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
((|HasCategory| |#1| (QUOTE (-172))))
(-386 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1478,7 +1478,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-846))))
(-387)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-388)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1490,13 +1490,13 @@ NIL
NIL
(-390 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
NIL
(-391)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-392 -3191 UP UPUP R)
+(-392 -3195 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1520,11 +1520,11 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-398 -3348 |returnType| -4093 |symbols|)
+(-398 -3352 |returnType| -4094 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-399 -3191 UP)
+(-399 -3195 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1538,15 +1538,15 @@ NIL
NIL
(-402)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-403 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4390)) (|HasAttribute| |#1| (QUOTE -4398)))
+((|HasAttribute| |#1| (QUOTE -4391)) (|HasAttribute| |#1| (QUOTE -4399)))
(-404)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-1403 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-1402 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-405 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1558,15 +1558,15 @@ NIL
NIL
(-407 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4394 -12 (|has| |#1| (-6 -4405)) (|has| |#1| (-452)) (|has| |#1| (-6 -4394))) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-816))) (-4032 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-846)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#1| (QUOTE -4394)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+((-4395 -12 (|has| |#1| (-6 -4406)) (|has| |#1| (-452)) (|has| |#1| (-6 -4395))) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-816))) (-4034 (|HasCategory| |#1| (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-846)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-824)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-545))) (-12 (|HasAttribute| |#1| (QUOTE -4406)) (|HasAttribute| |#1| (QUOTE -4395)) (|HasCategory| |#1| (QUOTE (-452)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-408 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-409 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-410 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
@@ -1580,11 +1580,11 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-413 R -3191 UP A)
+(-413 R -3195 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4404 . T))
+((-4405 . T))
NIL
-(-414 R -3191 UP A |ibasis|)
+(-414 R -3195 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1034) (|devaluate| |#2|))))
@@ -1598,12 +1598,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))))
(-417 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4404 |has| |#1| (-555)) (-4402 . T) (-4401 . T))
+((-4405 |has| |#1| (-555)) (-4403 . T) (-4402 . T))
NIL
(-418 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1212))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452))))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -309) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -286) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1212))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-1212)))) (|HasCategory| |#1| (QUOTE (-1018))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-452))))
(-419 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1630,17 +1630,17 @@ NIL
((|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368))))
(-425 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4407 . T) (-4397 . T) (-4408 . T))
+((-4408 . T) (-4398 . T) (-4409 . T))
NIL
-(-426 R -3191)
+(-426 R -3195)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-427 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4394 -12 (|has| |#1| (-6 -4394)) (|has| |#2| (-6 -4394))) (-4401 . T) (-4402 . T) (-4404 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4394)) (|HasAttribute| |#2| (QUOTE -4394))))
-(-428 R -3191)
+((-4395 -12 (|has| |#1| (-6 -4395)) (|has| |#2| (-6 -4395))) (-4402 . T) (-4403 . T) (-4405 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4395)) (|HasAttribute| |#2| (QUOTE -4395))))
+(-428 R -3195)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
@@ -1650,17 +1650,17 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-1105))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))))
(-430 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4404 -4032 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) ((-4409 "*") |has| |#1| (-555)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-555)) (-4399 |has| |#1| (-555)))
+((-4405 -4034 (|has| |#1| (-1045)) (|has| |#1| (-473))) (-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) ((-4410 "*") |has| |#1| (-555)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-555)) (-4400 |has| |#1| (-555)))
NIL
-(-431 R -3191)
+(-431 R -3195)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-432 R -3191)
+(-432 R -3195)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-433 R -3191)
+(-433 R -3195)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1668,7 +1668,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-435 R -3191 UP)
+(-435 R -3195 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-48)))))
@@ -1700,7 +1700,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-443 R UP -3191)
+(-443 R UP -3195)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1738,16 +1738,16 @@ NIL
NIL
(-452)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-453 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4404 |has| (-407 (-948 |#1|)) (-555)) (-4402 . T) (-4401 . T))
+((-4405 |has| (-407 (-948 |#1|)) (-555)) (-4403 . T) (-4402 . T))
((|HasCategory| (-407 (-948 |#1|)) (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| (-407 (-948 |#1|)) (QUOTE (-555))))
(-454 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-555)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-905))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-455 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1774,7 +1774,7 @@ NIL
NIL
(-461 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
NIL
(-462 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1782,7 +1782,7 @@ NIL
NIL
(-463 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))))
(-464 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
@@ -1812,7 +1812,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-471 |lv| -3191 R)
+(-471 |lv| -3195 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1822,23 +1822,23 @@ NIL
NIL
(-473)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-474 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
(-475 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))))
+((-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))))
(-476 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))))
(-477)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-478)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1846,29 +1846,29 @@ NIL
NIL
(-479 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
(-480)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-481 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-555)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
-(-482 -3304 S)
+(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-905))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(-482 -3308 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4032 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4032 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4034 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4034 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
(-483)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
NIL
(-484 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
-(-485 -3191 UP UPUP R)
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+(-485 -3195 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1878,12 +1878,12 @@ NIL
NIL
(-487)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4032 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4034 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
(-488 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4407)) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))))
+((|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))))
(-489 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1904,33 +1904,33 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-494 -3191 UP |AlExt| |AlPol|)
+(-494 -3195 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-495)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| $ (QUOTE (-1045))) (|HasCategory| $ (LIST (QUOTE -1034) (QUOTE (-563)))))
(-496 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-497 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-498 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-499 R UP -3191)
+(-499 R UP -3195)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-500 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -309) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-112) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-112) (QUOTE (-1093))) (|HasCategory| (-112) (LIST (QUOTE -610) (QUOTE (-858)))))
(-501 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
@@ -1944,7 +1944,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-504 -3191 |Expon| |VarSet| |DPoly|)
+(-504 -3195 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-1169)))))
@@ -1994,36 +1994,36 @@ NIL
((|HasCategory| |#2| (QUOTE (-788))))
(-516 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-517)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-518 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (|HasCategory| (-580 |#1|) (QUOTE (-145))) (|HasCategory| (-580 |#1|) (QUOTE (-368)))) (|HasCategory| (-580 |#1|) (QUOTE (-147))) (|HasCategory| (-580 |#1|) (QUOTE (-368))) (|HasCategory| (-580 |#1|) (QUOTE (-145))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (|HasCategory| (-580 |#1|) (QUOTE (-145))) (|HasCategory| (-580 |#1|) (QUOTE (-368)))) (|HasCategory| (-580 |#1|) (QUOTE (-147))) (|HasCategory| (-580 |#1|) (QUOTE (-368))) (|HasCategory| (-580 |#1|) (QUOTE (-145))))
(-519 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-520 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-521 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4408)))
+((|HasAttribute| |#3| (QUOTE -4409)))
(-522 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4408)))
+((|HasAttribute| |#7| (QUOTE -4409)))
(-523 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4409 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-524)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2056,7 +2056,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-532 K -3191 |Par|)
+(-532 K -3195 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2080,7 +2080,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-538 K -3191 |Par|)
+(-538 K -3195 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2110,7 +2110,7 @@ NIL
NIL
(-545)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4406 . T) (-4407 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-546)
((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits.")))
@@ -2126,13 +2126,13 @@ NIL
NIL
(-549 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
-(-550 R -3191)
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
+(-550 R -3195)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-551 R0 -3191 UP UPUP R)
+(-551 R0 -3195 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2142,7 +2142,7 @@ NIL
NIL
(-553 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-1403 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-1402 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-554 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2150,9 +2150,9 @@ NIL
NIL
(-555)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-556 R -3191)
+(-556 R -3195)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2164,7 +2164,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-559 R -3191 L)
+(-559 R -3195 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|))))
@@ -2172,31 +2172,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-561 -3191 UP UPUP R)
+(-561 -3195 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-562 -3191 UP)
+(-562 -3195 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-563)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4389 . T) (-4395 . T) (-4399 . T) (-4394 . T) (-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4390 . T) (-4396 . T) (-4400 . T) (-4395 . T) (-4406 . T) (-4407 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-564)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-565 R -3191 L)
+(-565 R -3195 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -651) (|devaluate| |#2|))))
-(-566 R -3191)
+(-566 R -3195)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-626)))))
-(-567 -3191 UP)
+(-567 -3195 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2204,27 +2204,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-569 -3191)
+(-569 -3195)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-570 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-1403 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-1402 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-571)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-572 R -3191)
+(-572 R -3195)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-284))) (|HasCategory| |#2| (QUOTE (-626))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-284)))) (|HasCategory| |#1| (QUOTE (-555))))
-(-573 -3191 UP)
+(-573 -3195 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-574 R -3191)
+(-574 R -3195)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2246,27 +2246,27 @@ NIL
NIL
(-579 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-580 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368))))
(-581)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-582 R -3191)
+(-582 R -3195)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-583 E -3191)
+(-583 E -3195)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-584 -3191)
+(-584 -3195)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
((|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-1169)))))
(-585 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
@@ -2294,19 +2294,19 @@ NIL
NIL
(-591 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-4032 (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (-4034 (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
(-592 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-593 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))) (|HasCategory| (-563) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))) (|HasCategory| (-563) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))))
(-594 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4402 |has| |#1| (-555)) (-4401 |has| |#1| (-555)) ((-4409 "*") |has| |#1| (-555)) (-4400 |has| |#1| (-555)) (-4404 . T))
+((-4403 |has| |#1| (-555)) (-4402 |has| |#1| (-555)) ((-4410 "*") |has| |#1| (-555)) (-4401 |has| |#1| (-555)) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-555))))
(-595 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
@@ -2316,7 +2316,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-597 R -3191 FG)
+(-597 R -3195 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2326,12 +2326,12 @@ NIL
NIL
(-599 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-600 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-846))) (|HasAttribute| |#1| (QUOTE -4407)) (|HasCategory| |#3| (QUOTE (-1093))))
+((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-846))) (|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#3| (QUOTE (-1093))))
(-601 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2346,19 +2346,19 @@ NIL
NIL
(-604 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4404 -4032 (-2190 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))) (-4402 . T) (-4401 . T))
-((-4032 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
+((-4405 -4034 (-2188 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))) (-4403 . T) (-4402 . T))
+((-4034 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
(-605 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))))
(-606 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-607 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-608 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2376,7 +2376,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-612 -3191 UP)
+(-612 -3195 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2398,19 +2398,19 @@ NIL
NIL
(-617 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-618 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-844))))
-(-619 R -3191)
+(-619 R -3195)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-620 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4400 . T) (-4404 . T))
+((-4403 . T) (-4402 . T) ((-4410 "*") . T) (-4401 . T) (-4405 . T))
((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))
(-621 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
@@ -2426,7 +2426,7 @@ NIL
NIL
(-624 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-625 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2436,30 +2436,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-627 R -3191)
+(-627 R -3195)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-628 |lv| -3191)
+(-628 |lv| -3195)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-629)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2557) (QUOTE (-52))))))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1151) (QUOTE (-846))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 (-52))) (QUOTE (-1093))))
+((-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2556) (QUOTE (-52))))))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-1151) (QUOTE (-846))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 (-52))) (QUOTE (-1093))))
(-630 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-363))))
(-631 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4402 . T) (-4401 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4403 . T) (-4402 . T))
NIL
(-632 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4404 -4032 (-2190 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))) (-4402 . T) (-4401 . T))
-((-4032 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
+((-4405 -4034 (-2188 (|has| |#2| (-367 |#1|)) (|has| |#1| (-555))) (-12 (|has| |#2| (-417 |#1|)) (|has| |#1| (-555)))) (-4403 . T) (-4402 . T))
+((-4034 (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -417) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -367) (|devaluate| |#1|))))
(-633 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
@@ -2471,10 +2471,10 @@ NIL
(-635 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2176 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363))))
+((-2174 (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-363))))
(-636 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-637 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
@@ -2490,16 +2490,16 @@ NIL
NIL
(-640 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-824))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-641 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
(-642 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-643 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2511,22 +2511,22 @@ NIL
(-645 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)))
+((|HasAttribute| |#1| (QUOTE -4409)))
(-646 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-647 R -3191 L)
+(-647 R -3195 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-648 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
(-649 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
(-650 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
@@ -2534,15 +2534,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))))
(-651 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-652 -3191 UP)
+(-652 -3195 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-653 A -3397)
+(-653 A -4231)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
(-654 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
@@ -2558,7 +2558,7 @@ NIL
NIL
(-657 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
((|HasCategory| |#1| (QUOTE (-787))))
(-658 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2566,7 +2566,7 @@ NIL
NIL
(-659 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4402 . T) (-4401 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4403 . T) (-4402 . T))
((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-172))))
(-660 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2574,13 +2574,13 @@ NIL
NIL
(-661 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
-(-662 -3191)
+(-662 -3195)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-663 -3191 |Row| |Col| M)
+(-663 -3195 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2590,8 +2590,8 @@ NIL
NIL
(-665 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4404 . T) (-4407 . T) (-4401 . T) (-4402 . T))
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-555))) (-4032 (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+((-4405 . T) (-4408 . T) (-4402 . T) (-4403 . T))
+((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-555))) (-4034 (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
(-666)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2611,7 +2611,7 @@ NIL
(-670 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (QUOTE (-1045))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-671)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2655,10 +2655,10 @@ NIL
(-681 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-555))))
+((|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-555))))
(-682 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4407 . T) (-4408 . T))
+((-4408 . T) (-4409 . T))
NIL
(-683 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2666,8 +2666,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))))
(-684 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4407 . T) (-4408 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4409 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4408 . T) (-4409 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-555))) (|HasAttribute| |#1| (QUOTE (-4410 "*"))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-685 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
@@ -2676,7 +2676,7 @@ NIL
((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-687 S -3191 FLAF FLAS)
+(-687 S -3195 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2686,11 +2686,11 @@ NIL
NIL
(-689)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4400 . T) (-4405 |has| (-694) (-363)) (-4399 |has| (-694) (-363)) (-1413 . T) (-4406 |has| (-694) (-6 -4406)) (-4403 |has| (-694) (-6 -4403)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-694) (QUOTE (-147))) (|HasCategory| (-694) (QUOTE (-145))) (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-694) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-694) (QUOTE (-368))) (|HasCategory| (-694) (QUOTE (-363))) (-4032 (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-694) (QUOTE (-363)))) (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-694) (QUOTE (-233))) (-4032 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-349)))) (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (LIST (QUOTE -286) (QUOTE (-694)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -309) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (-4032 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-349)))) (|HasCategory| (-694) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-694) (QUOTE (-1018))) (|HasCategory| (-694) (QUOTE (-1193))) (-12 (|HasCategory| (-694) (QUOTE (-998))) (|HasCategory| (-694) (QUOTE (-1193)))) (-4032 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-363))) (-12 (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (QUOTE (-905))))) (-4032 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (-12 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-905)))) (-12 (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (QUOTE (-905))))) (|HasCategory| (-694) (QUOTE (-545))) (-12 (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-1193)))) (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905))) (-4032 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-363)))) (-4032 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-555)))) (-12 (|HasCategory| (-694) (QUOTE (-233))) (|HasCategory| (-694) (QUOTE (-363)))) (-12 (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-694) (QUOTE (-363)))) (|HasCategory| (-694) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-694) (QUOTE (-846))) (|HasCategory| (-694) (QUOTE (-555))) (|HasAttribute| (-694) (QUOTE -4406)) (|HasAttribute| (-694) (QUOTE -4403)) (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-145)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-349)))))
+((-4401 . T) (-4406 |has| (-694) (-363)) (-4400 |has| (-694) (-363)) (-1413 . T) (-4407 |has| (-694) (-6 -4407)) (-4404 |has| (-694) (-6 -4404)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-694) (QUOTE (-147))) (|HasCategory| (-694) (QUOTE (-145))) (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-694) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-694) (QUOTE (-368))) (|HasCategory| (-694) (QUOTE (-363))) (-4034 (|HasCategory| (-694) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-694) (QUOTE (-363)))) (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-694) (QUOTE (-233))) (-4034 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-349)))) (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (LIST (QUOTE -286) (QUOTE (-694)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -309) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-694)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-694) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-694) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (-4034 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-349)))) (|HasCategory| (-694) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-694) (QUOTE (-1018))) (|HasCategory| (-694) (QUOTE (-1193))) (-12 (|HasCategory| (-694) (QUOTE (-998))) (|HasCategory| (-694) (QUOTE (-1193)))) (-4034 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-363))) (-12 (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (QUOTE (-905))))) (-4034 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (-12 (|HasCategory| (-694) (QUOTE (-363))) (|HasCategory| (-694) (QUOTE (-905)))) (-12 (|HasCategory| (-694) (QUOTE (-349))) (|HasCategory| (-694) (QUOTE (-905))))) (|HasCategory| (-694) (QUOTE (-545))) (-12 (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-1193)))) (|HasCategory| (-694) (QUOTE (-1054))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905))) (-4034 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-363)))) (-4034 (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-555)))) (-12 (|HasCategory| (-694) (QUOTE (-233))) (|HasCategory| (-694) (QUOTE (-363)))) (-12 (|HasCategory| (-694) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-694) (QUOTE (-363)))) (|HasCategory| (-694) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-694) (QUOTE (-846))) (|HasCategory| (-694) (QUOTE (-555))) (|HasAttribute| (-694) (QUOTE -4407)) (|HasAttribute| (-694) (QUOTE -4404)) (-12 (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-145)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-694) (QUOTE (-307))) (|HasCategory| (-694) (QUOTE (-905)))) (|HasCategory| (-694) (QUOTE (-349)))))
(-690 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-691 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2700,13 +2700,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-693 OV E -3191 PG)
+(-693 OV E -3195 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-694)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-1403 . T) (-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-1402 . T) (-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-695 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2714,7 +2714,7 @@ NIL
NIL
(-696)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4406 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4407 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-697 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2736,7 +2736,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-702 S -3209 I)
+(-702 S -3213 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2746,7 +2746,7 @@ NIL
NIL
(-704 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-705 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2756,25 +2756,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-707 R |Mod| -2472 -3164 |exactQuo|)
+(-707 R |Mod| -4219 -4300 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-708 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-709 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-710 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T))
+((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
-(-711 R |Mod| -2472 -3164 |exactQuo|)
+(-711 R |Mod| -4219 -4300 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4404 . T))
+((-4405 . T))
NIL
(-712 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2782,11 +2782,11 @@ NIL
NIL
(-713 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
NIL
-(-714 -3191)
+(-714 -3195)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-715 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2810,7 +2810,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))))
(-720 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4400 |has| |#1| (-363)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 |has| |#1| (-363)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-721 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2820,7 +2820,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-723 -3191 UP)
+(-723 -3195 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2838,8 +2838,8 @@ NIL
NIL
(-727 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-555)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-905))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-860 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-728 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2854,15 +2854,15 @@ NIL
NIL
(-731 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T))
+((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T))
((-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-846))))
(-732 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4397 . T) (-4408 . T))
+((-4398 . T) (-4409 . T))
NIL
(-733 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4407 . T) (-4397 . T) (-4408 . T))
+((-4408 . T) (-4398 . T) (-4409 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-734)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
@@ -2874,7 +2874,7 @@ NIL
NIL
(-736 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4402 . T) (-4401 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4403 . T) (-4402 . T) (-4405 . T))
NIL
(-737 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2890,7 +2890,7 @@ NIL
NIL
(-740 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
NIL
(-741)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -2972,11 +2972,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-761 -3191)
+(-761 -3195)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-762 P -3191)
+(-762 P -3195)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -2984,7 +2984,7 @@ NIL
NIL
NIL
NIL
-(-764 UP -3191)
+(-764 UP -3195)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -2998,9 +2998,9 @@ NIL
NIL
(-767)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4409 "*") . T))
+(((-4410 "*") . T))
NIL
-(-768 R -3191)
+(-768 R -3195)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3020,7 +3020,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-773 -3191 |ExtF| |SUEx| |ExtP| |n|)
+(-773 -3195 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3034,23 +3034,23 @@ NIL
NIL
(-776 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2176 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2176 (|HasCategory| |#1| (QUOTE (-545)))) (-2176 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2176 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563))))) (-2176 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2176 (|HasCategory| |#1| (LIST (QUOTE -988) (QUOTE (-563))))))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2174 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2174 (|HasCategory| |#1| (QUOTE (-545)))) (-2174 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2174 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-563))))) (-2174 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-1169)))) (-2174 (|HasCategory| |#1| (LIST (QUOTE -988) (QUOTE (-563))))))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-777 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-778 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-779 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))
(-780 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
(-781 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
@@ -3102,25 +3102,25 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-368))))
(-793 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
NIL
-(-794 -4032 R OS S)
+(-794 -4034 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-795 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-4032 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))
+((-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (-4034 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-995 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))))
(-796)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-797 R -3191 L)
+(-797 R -3195 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-798 R -3191)
+(-798 R -3195)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -3128,7 +3128,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-800 R -3191)
+(-800 R -3195)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3136,11 +3136,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-802 -3191 UP UPUP R)
+(-802 -3195 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-803 -3191 UP L LQ)
+(-803 -3195 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3148,41 +3148,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-805 -3191 UP L LQ)
+(-805 -3195 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-806 -3191 UP)
+(-806 -3195 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-807 -3191 L UP A LO)
+(-807 -3195 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-808 -3191 UP)
+(-808 -3195 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-809 -3191 LO)
+(-809 -3195 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-810 -3191 LODO)
+(-810 -3195 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-811 -3304 S |f|)
+(-811 -3308 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4401 |has| |#2| (-1045)) (-4402 |has| |#2| (-1045)) (-4404 |has| |#2| (-6 -4404)) ((-4409 "*") |has| |#2| (-172)) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4032 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4032 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4404)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
+((-4402 |has| |#2| (-1045)) (-4403 |has| |#2| (-1045)) (-4405 |has| |#2| (-6 -4405)) ((-4410 "*") |has| |#2| (-172)) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-363))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363)))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-789))) (-4034 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1045)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-172)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-233)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-368)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (QUOTE (-1045)))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4034 (|HasCategory| |#2| (QUOTE (-1045))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-1093)))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))))
(-812 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-814 (-1169)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-813 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4409 "*") |has| |#2| (-363)) (-4400 |has| |#2| (-363)) (-4405 |has| |#2| (-363)) (-4399 |has| |#2| (-363)) (-4404 . T) (-4402 . T) (-4401 . T))
+(((-4410 "*") |has| |#2| (-363)) (-4401 |has| |#2| (-363)) (-4406 |has| |#2| (-363)) (-4400 |has| |#2| (-363)) (-4405 . T) (-4403 . T) (-4402 . T))
((|HasCategory| |#2| (QUOTE (-363))))
(-814 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -3194,7 +3194,7 @@ NIL
NIL
(-816)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-817)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -3222,7 +3222,7 @@ NIL
NIL
(-823 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-233))))
(-824)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3234,7 +3234,7 @@ NIL
NIL
(-826 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4407 . T) (-4397 . T) (-4408 . T))
+((-4408 . T) (-4398 . T) (-4409 . T))
NIL
(-827)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -3246,8 +3246,8 @@ NIL
NIL
(-829 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4404 |has| |#1| (-844)))
-((|HasCategory| |#1| (QUOTE (-844))) (-4032 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4405 |has| |#1| (-844)))
+((|HasCategory| |#1| (QUOTE (-844))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
(-830 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'.")))
NIL
@@ -3258,7 +3258,7 @@ NIL
NIL
(-832 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T))
+((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))))
(-833)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3286,13 +3286,13 @@ NIL
NIL
(-839 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4404 |has| |#1| (-844)))
-((|HasCategory| |#1| (QUOTE (-844))) (-4032 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4405 |has| |#1| (-844)))
+((|HasCategory| |#1| (QUOTE (-844))) (-4034 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-21))))
(-840)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-841 -3304 S)
+(-841 -3308 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3306,7 +3306,7 @@ NIL
NIL
(-844)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-845 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3322,7 +3322,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))))
(-848 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-849 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
@@ -3330,11 +3330,11 @@ NIL
((|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555))))
(-850 R |sigma| -1648)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-363))))
(-851 |x| R |sigma| -1648)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-363))))
(-852 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
@@ -3378,7 +3378,7 @@ NIL
NIL
(-862 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T))
+((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))))
(-863 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3390,24 +3390,24 @@ NIL
NIL
(-865 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-866 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-867 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-866 |#1|) (QUOTE (-905))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-866 |#1|) (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-147))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-866 |#1|) (QUOTE (-1018))) (|HasCategory| (-866 |#1|) (QUOTE (-816))) (-4032 (|HasCategory| (-866 |#1|) (QUOTE (-816))) (|HasCategory| (-866 |#1|) (QUOTE (-846)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (QUOTE (-1144))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (QUOTE (-233))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -866) (|devaluate| |#1|)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (QUOTE (-307))) (|HasCategory| (-866 |#1|) (QUOTE (-545))) (|HasCategory| (-866 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (|HasCategory| (-866 |#1|) (QUOTE (-145)))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-866 |#1|) (QUOTE (-905))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-866 |#1|) (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-147))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-866 |#1|) (QUOTE (-1018))) (|HasCategory| (-866 |#1|) (QUOTE (-816))) (-4034 (|HasCategory| (-866 |#1|) (QUOTE (-816))) (|HasCategory| (-866 |#1|) (QUOTE (-846)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (QUOTE (-1144))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| (-866 |#1|) (QUOTE (-233))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -309) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (LIST (QUOTE -286) (LIST (QUOTE -866) (|devaluate| |#1|)) (LIST (QUOTE -866) (|devaluate| |#1|)))) (|HasCategory| (-866 |#1|) (QUOTE (-307))) (|HasCategory| (-866 |#1|) (QUOTE (-545))) (|HasCategory| (-866 |#1|) (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-866 |#1|) (QUOTE (-905)))) (|HasCategory| (-866 |#1|) (QUOTE (-145)))))
(-868 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (-4032 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (-4034 (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-846))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-869 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))))
(-870)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3463,7 +3463,7 @@ NIL
(-883 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2176 (|HasCategory| |#2| (QUOTE (-1045)))) (-2176 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (-2176 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))
+((-12 (-2174 (|HasCategory| |#2| (QUOTE (-1045)))) (-2174 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (-12 (|HasCategory| |#2| (QUOTE (-1045))) (-2174 (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))
(-884 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3472,7 +3472,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-886 R -3209)
+(-886 R -3213)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3496,7 +3496,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-892 UP -3191)
+(-892 UP -3195)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3514,19 +3514,19 @@ NIL
NIL
(-896 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-897 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-898 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
(-899 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4404 . T))
+((-4405 . T))
NIL
(-900 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
@@ -3534,8 +3534,8 @@ NIL
NIL
(-901 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4404 . T))
-((-4032 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846))))
+((-4405 . T))
+((-4034 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-846))))
(-902 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
@@ -3550,13 +3550,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-145))))
(-905)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-906 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
((|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-145))) (|HasCategory| $ (QUOTE (-368))))
-(-907 R0 -3191 UP UPUP R)
+(-907 R0 -3195 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3570,7 +3570,7 @@ NIL
NIL
(-910 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-911 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3584,7 +3584,7 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-914 -3191)
+(-914 -3195)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
@@ -3594,17 +3594,17 @@ NIL
NIL
(-916)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-917)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4409 "*") . T))
+(((-4410 "*") . T))
NIL
-(-918 -3191 P)
+(-918 -3195 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-919 |xx| -3191)
+(-919 |xx| -3195)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
@@ -3628,7 +3628,7 @@ NIL
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-925 R -3191)
+(-925 R -3195)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3640,7 +3640,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-928 S R -3191)
+(-928 S R -3195)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3660,11 +3660,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -882) (|devaluate| |#1|))))
-(-933 R -3191 -3209)
+(-933 R -3195 -3213)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-934 -3209)
+(-934 -3213)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -3686,8 +3686,8 @@ NIL
NIL
(-939 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-940 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3707,12 +3707,12 @@ NIL
(-944 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-905))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846))))
+((|HasCategory| |#2| (QUOTE (-905))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#4| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#4| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-846))))
(-945 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
NIL
-(-946 E V R P -3191)
+(-946 E V R P -3195)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3722,9 +3722,9 @@ NIL
NIL
(-948 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-949 E V R P -3191)
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1169) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-949 E V R P -3195)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-452))))
@@ -3746,13 +3746,13 @@ NIL
NIL
(-954 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-955)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-956 -3191)
+(-956 -3195)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3766,12 +3766,12 @@ NIL
NIL
(-959 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4405)))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-131)))) (|HasAttribute| |#1| (QUOTE -4406)))
(-960 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4404 -12 (|has| |#2| (-473)) (|has| |#1| (-473))))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846))))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846)))))
+((-4405 -12 (|has| |#2| (-473)) (|has| |#1| (-473))))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846))))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722))))) (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-368)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-473))) (|HasCategory| |#2| (QUOTE (-473)))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-722)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-131))) (|HasCategory| |#2| (QUOTE (-131)))) (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-846)))))
(-961)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3786,7 +3786,7 @@ NIL
NIL
(-964 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4407 . T) (-4408 . T))
+((-4408 . T) (-4409 . T))
NIL
(-965 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3806,7 +3806,7 @@ NIL
NIL
(-969 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-970)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3818,7 +3818,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-555))))
(-972 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4407 . T))
+((-4408 . T))
NIL
(-973 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3834,7 +3834,7 @@ NIL
NIL
(-976 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
(-977 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
@@ -3852,7 +3852,7 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-981 K R UP -3191)
+(-981 K R UP -3195)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -3882,7 +3882,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-1018))) (|HasCategory| |#2| (QUOTE (-816))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-1144))))
(-988 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-989 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
@@ -3894,7 +3894,7 @@ NIL
NIL
(-991 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4407 . T) (-4408 . T))
+((-4408 . T) (-4409 . T))
NIL
(-992 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
@@ -3902,7 +3902,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (QUOTE (-1054))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-290))))
(-993 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4400 |has| |#1| (-290)) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 |has| |#1| (-290)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-994 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
@@ -3910,12 +3910,12 @@ NIL
NIL
(-995 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4400 |has| |#1| (-290)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))))
+((-4401 |has| |#1| (-290)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-290))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -286) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-1054))) (|HasCategory| |#1| (QUOTE (-545))))
(-996 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-997 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3924,14 +3924,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-999 -3191 UP UPUP |radicnd| |n|)
+(-999 -3195 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4400 |has| (-407 |#2|) (-363)) (-4405 |has| (-407 |#2|) (-363)) (-4399 |has| (-407 |#2|) (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4032 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4032 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4032 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-563)))) (-4032 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
+((-4401 |has| (-407 |#2|) (-363)) (-4406 |has| (-407 |#2|) (-363)) (-4400 |has| (-407 |#2|) (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-407 |#2|) (QUOTE (-145))) (|HasCategory| (-407 |#2|) (QUOTE (-147))) (|HasCategory| (-407 |#2|) (QUOTE (-349))) (-4034 (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (|HasCategory| (-407 |#2|) (QUOTE (-363))) (|HasCategory| (-407 |#2|) (QUOTE (-368))) (-4034 (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (QUOTE (-349)))) (-4034 (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-349))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -636) (QUOTE (-563)))) (-4034 (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 |#2|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-12 (|HasCategory| (-407 |#2|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))) (-12 (|HasCategory| (-407 |#2|) (QUOTE (-233))) (|HasCategory| (-407 |#2|) (QUOTE (-363)))))
(-1000 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4032 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-563) (QUOTE (-905))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| (-563) (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-147))) (|HasCategory| (-563) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-1018))) (|HasCategory| (-563) (QUOTE (-816))) (-4034 (|HasCategory| (-563) (QUOTE (-816))) (|HasCategory| (-563) (QUOTE (-846)))) (|HasCategory| (-563) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-1144))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| (-563) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| (-563) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| (-563) (QUOTE (-233))) (|HasCategory| (-563) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| (-563) (LIST (QUOTE -514) (QUOTE (-1169)) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -309) (QUOTE (-563)))) (|HasCategory| (-563) (LIST (QUOTE -286) (QUOTE (-563)) (QUOTE (-563)))) (|HasCategory| (-563) (QUOTE (-307))) (|HasCategory| (-563) (QUOTE (-545))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-563) (LIST (QUOTE -636) (QUOTE (-563)))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-563) (QUOTE (-905)))) (|HasCategory| (-563) (QUOTE (-145)))))
(-1001)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3951,7 +3951,7 @@ NIL
(-1005 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)) (|HasCategory| |#2| (QUOTE (-1093))))
+((|HasAttribute| |#1| (QUOTE -4409)) (|HasCategory| |#2| (QUOTE (-1093))))
(-1006 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
@@ -3962,21 +3962,21 @@ NIL
NIL
(-1008)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4400 . T) (-4405 . T) (-4399 . T) (-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4404 . T))
+((-4401 . T) (-4406 . T) (-4400 . T) (-4403 . T) (-4402 . T) ((-4410 "*") . T) (-4405 . T))
NIL
-(-1009 R -3191)
+(-1009 R -3195)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1010 R -3191)
+(-1010 R -3195)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1011 -3191 UP)
+(-1011 -3195 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1012 -3191 UP)
+(-1012 -3195 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -4010,9 +4010,9 @@ NIL
NIL
(-1020 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4400 . T) (-4405 . T) (-4399 . T) (-4402 . T) (-4401 . T) ((-4409 "*") . T) (-4404 . T))
-((-4032 (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (QUOTE (-563)))))
-(-1021 -3191 L)
+((-4401 . T) (-4406 . T) (-4400 . T) (-4403 . T) (-4402 . T) ((-4410 "*") . T) (-4405 . T))
+((-4034 (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-407 (-563)) (LIST (QUOTE -1034) (QUOTE (-563)))))
+(-1021 -3195 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -4022,12 +4022,12 @@ NIL
((|HasCategory| |#1| (QUOTE (-1093))))
(-1023 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))))
(-1024 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4409 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4410 "*"))))
(-1025 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
@@ -4048,14 +4048,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1030 -3191 |Expon| |VarSet| |FPol| |LFPol|)
+(-1030 -3195 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1031)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -2557) (QUOTE (-52))))))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -2556) (QUOTE (-52))))))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))))
(-1032)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4098,7 +4098,7 @@ NIL
NIL
(-1042 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
((-12 (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1093))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -776) (|devaluate| |#1|) (LIST (QUOTE -860) (|devaluate| |#2|)))))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-776 |#1| (-860 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| (-860 |#2|) (QUOTE (-368))) (|HasCategory| (-776 |#1| (-860 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
(-1043)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
@@ -4110,9 +4110,9 @@ NIL
NIL
(-1045)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4404 . T))
+((-4405 . T))
NIL
-(-1046 |xx| -3191)
+(-1046 |xx| -3195)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -4122,12 +4122,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-307))) (|HasCategory| |#4| (QUOTE (-363))) (|HasCategory| |#4| (QUOTE (-555))) (|HasCategory| |#4| (QUOTE (-172))))
(-1048 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4407 . T) (-4402 . T) (-4401 . T))
+((-4408 . T) (-4403 . T) (-4402 . T))
NIL
(-1049 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4407 . T) (-4402 . T) (-4401 . T))
-((-4032 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4403 . T) (-4402 . T))
+((-4034 (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (QUOTE (-307))) (|HasCategory| |#3| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-172))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))))
(-1050 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4146,7 +4146,7 @@ NIL
NIL
(-1054)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1055 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
@@ -4154,19 +4154,19 @@ NIL
NIL
(-1056)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4395 . T) (-4399 . T) (-4394 . T) (-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4396 . T) (-4400 . T) (-4395 . T) (-4406 . T) (-4407 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1057)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -2557) (QUOTE (-52))))))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (QUOTE (-1093))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2557 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1169))) (LIST (QUOTE |:|) (QUOTE -2556) (QUOTE (-52))))))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-52) (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| (-52) (QUOTE (-1093))) (|HasCategory| (-52) (LIST (QUOTE -309) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (QUOTE (-1093))) (|HasCategory| (-1169) (QUOTE (-846))) (|HasCategory| (-52) (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-52) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1169)) (|:| -2556 (-52))) (LIST (QUOTE -610) (QUOTE (-858)))))
(-1058 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-545))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -988) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-1169)))))
(-1059 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
NIL
(-1060)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -4190,7 +4190,7 @@ NIL
NIL
(-1065 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
(-1066 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -4204,11 +4204,11 @@ NIL
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1069 |Base| R -3191)
+(-1069 |Base| R -3195)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1070 |Base| R -3191)
+(-1070 |Base| R -3195)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
@@ -4222,8 +4222,8 @@ NIL
NIL
(-1073 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4400 |has| |#1| (-363)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))))
+((-4401 |has| |#1| (-363)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-349))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-368))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-349)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))))
(-1074 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4250,8 +4250,8 @@ NIL
NIL
(-1080 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1081 (-1169)) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-233))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1081 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -4294,7 +4294,7 @@ NIL
NIL
(-1091 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4397 . T))
+((-4398 . T))
NIL
(-1092 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
@@ -4310,8 +4310,8 @@ NIL
NIL
(-1095 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4407 . T) (-4397 . T) (-4408 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4408 . T) (-4398 . T) (-4409 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-368))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-1096 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
@@ -4338,7 +4338,7 @@ NIL
NIL
(-1102 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
(-1103)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -4354,8 +4354,8 @@ NIL
NIL
(-1106 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4401 |has| |#3| (-1045)) (-4402 |has| |#3| (-1045)) (-4404 |has| |#3| (-6 -4404)) ((-4409 "*") |has| |#3| (-172)) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#3| (QUOTE (-363))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-4032 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-4032 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1093)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4032 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093))))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4032 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (|HasAttribute| |#3| (QUOTE -4404)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
+((-4402 |has| |#3| (-1045)) (-4403 |has| |#3| (-1045)) (-4405 |has| |#3| (-6 -4405)) ((-4410 "*") |has| |#3| (-172)) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#3| (QUOTE (-363))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-363)))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-789))) (-4034 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844)))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-172))) (-4034 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (QUOTE (-1093)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (QUOTE (-1045)))) (-4034 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-131)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-172)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-233)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-363)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-368)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-722)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-789)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-844)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093))))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-172))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-363))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-722))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-789))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-844))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (|HasCategory| (-563) (QUOTE (-846))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (QUOTE (-233))) (|HasCategory| |#3| (QUOTE (-1045)))) (-12 (|HasCategory| |#3| (QUOTE (-1045))) (|HasCategory| |#3| (LIST (QUOTE -896) (QUOTE (-1169))))) (-4034 (|HasCategory| |#3| (QUOTE (-1045))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563)))))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#3| (QUOTE (-1093)))) (|HasAttribute| |#3| (QUOTE -4405)) (|HasCategory| |#3| (QUOTE (-131))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#3| (QUOTE (-1093))) (|HasCategory| |#3| (LIST (QUOTE -309) (|devaluate| |#3|)))))
(-1107 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
@@ -4364,7 +4364,7 @@ NIL
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1109 R -3191)
+(-1109 R -3195)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4382,19 +4382,19 @@ NIL
NIL
(-1113)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4395 . T) (-4399 . T) (-4394 . T) (-4405 . T) (-4406 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4396 . T) (-4400 . T) (-4395 . T) (-4406 . T) (-4407 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1114 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4407 . T) (-4408 . T))
+((-4408 . T) (-4409 . T))
NIL
(-1115 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-363))) (|HasAttribute| |#3| (QUOTE (-4409 "*"))) (|HasCategory| |#3| (QUOTE (-172))))
+((|HasCategory| |#3| (QUOTE (-363))) (|HasAttribute| |#3| (QUOTE (-4410 "*"))) (|HasCategory| |#3| (QUOTE (-172))))
(-1116 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4407 . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4408 . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1117 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4402,17 +4402,17 @@ NIL
NIL
(-1118 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-905))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1119 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363))))
(-1120 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
-(-1121 UP -3191)
+(-1121 UP -3195)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4466,19 +4466,19 @@ NIL
NIL
(-1134 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093))) (-4032 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093))))) (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093))) (-4034 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -309) (LIST (QUOTE -1133) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1133 |#1| |#2|) (QUOTE (-1093))))) (|HasCategory| (-1133 |#1| |#2|) (LIST (QUOTE -610) (QUOTE (-858)))))
(-1135 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4404 . T) (-4396 |has| |#2| (-6 (-4409 "*"))) (-4407 . T) (-4401 . T) (-4402 . T))
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-363))) (-4032 (|HasAttribute| |#2| (QUOTE (-4409 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
+((-4405 . T) (-4397 |has| |#2| (-6 (-4410 "*"))) (-4408 . T) (-4402 . T) (-4403 . T))
+((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (-12 (|HasCategory| |#2| (QUOTE (-233))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (QUOTE (-307))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-363))) (-4034 (|HasAttribute| |#2| (QUOTE (-4410 "*"))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-172))))
(-1136 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1137)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
(-1138 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
@@ -4486,12 +4486,12 @@ NIL
NIL
(-1139 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))))
(-1140 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-1141 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4502,8 +4502,8 @@ NIL
NIL
(-1143 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))))
+((-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-846))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))))
(-1144)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
@@ -4526,20 +4526,20 @@ NIL
NIL
(-1149 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4408 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4409 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-1150)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
(-1151)
NIL
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144)))))) (|HasCategory| (-144) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| (-144) (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| (-144) (QUOTE (-1093))) (|HasCategory| (-144) (LIST (QUOTE -309) (QUOTE (-144))))))
(-1152 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#1|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (QUOTE (-1093))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2557 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (QUOTE (-1151))) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#1|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (QUOTE (-1093))) (|HasCategory| (-1151) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 (-1151)) (|:| -2556 |#1|)) (LIST (QUOTE -610) (QUOTE (-858)))))
(-1153 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
@@ -4570,9 +4570,9 @@ NIL
NIL
(-1160 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4409 "*") -4032 (-2190 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2190 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-905)))) (-4400 -4032 (-2190 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-555)) (-2190 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
-(-1161 R -3191)
+(((-4410 "*") -4034 (-2188 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2188 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-905)))) (-4401 -4034 (-2188 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-816))) (|has| |#1| (-555)) (-2188 (|has| |#1| (-363)) (|has| (-1167 |#1| |#2| |#3|) (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(-1161 R -3195)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4590,16 +4590,16 @@ NIL
NIL
(-1165 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-1144))) (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-233))) (|HasAttribute| |#1| (QUOTE -4406)) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1166 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
(-1167 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
(-1168)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4614,8 +4614,8 @@ NIL
NIL
(-1171 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-6 -4405)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-967) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasAttribute| |#1| (QUOTE -4405)))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-6 -4406)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-452))) (-12 (|HasCategory| (-967) (QUOTE (-131))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasAttribute| |#1| (QUOTE -4406)))
(-1172)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
@@ -4641,7 +4641,7 @@ NIL
NIL
NIL
(-1178)
-((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
+((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
(-1179 S)
@@ -4654,8 +4654,8 @@ NIL
NIL
(-1181 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4407 . T) (-4408 . T))
-((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2557) (|devaluate| |#2|)))))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4032 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2557 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4408 . T) (-4409 . T))
+((-12 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -309) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2387) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2556) (|devaluate| |#2|)))))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#2| (QUOTE (-1093)))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -611) (QUOTE (-536)))) (-12 (|HasCategory| |#2| (QUOTE (-1093))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#2| (QUOTE (-1093))) (-4034 (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#2| (LIST (QUOTE -610) (QUOTE (-858)))) (|HasCategory| (-2 (|:| -2387 |#1|) (|:| -2556 |#2|)) (LIST (QUOTE -610) (QUOTE (-858)))))
(-1182 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
@@ -4666,7 +4666,7 @@ NIL
NIL
(-1184 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4408 . T))
+((-4409 . T))
NIL
(-1185 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
@@ -4706,8 +4706,8 @@ NIL
NIL
(-1194 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4408 . T) (-4407 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
+((-4409 . T) (-4408 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1093))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
(-1195 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4716,7 +4716,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1197 R -3191)
+(-1197 R -3195)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4724,7 +4724,7 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1199 R -3191)
+(-1199 R -3195)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -611) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -882) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -882) (|devaluate| |#1|)))))
@@ -4734,12 +4734,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-368))))
(-1201 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
(-1202 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-145))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-363))))
(-1203 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4752,7 +4752,7 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
((|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))))
-(-1206 -3191)
+(-1206 -3195)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
@@ -4778,7 +4778,7 @@ NIL
NIL
(-1212)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1213)
((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits.")))
@@ -4798,7 +4798,7 @@ NIL
NIL
(-1217 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1218 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
@@ -4806,16 +4806,16 @@ NIL
((|HasCategory| |#2| (QUOTE (-363))))
(-1219 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1220 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-4032 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))))) (-4032 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-905))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))) (-4034 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-147))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-233)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846))))) (-4034 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-816)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1018)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-1169)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -286) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -309) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -514) (QUOTE (-1169)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-846)))) (|HasCategory| |#2| (QUOTE (-905))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-545)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-307)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#1| (QUOTE (-145))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-145))))))
(-1221 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4409 "*") -4032 (-2190 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2190 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-905)))) (-4400 -4032 (-2190 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-816))) (|has| |#1| (-555)) (-2190 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-905)))) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
+(((-4410 "*") -4034 (-2188 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-816))) (|has| |#1| (-172)) (-2188 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-905)))) (-4401 -4034 (-2188 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-816))) (|has| |#1| (-555)) (-2188 (|has| |#1| (-363)) (|has| (-1249 |#1| |#2| |#3|) (-905)))) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-147)))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|)))))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-233))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-563)) (|devaluate| |#1|))))) (|HasCategory| (-563) (QUOTE (-1105))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-363))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-1169)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1018))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363))))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-1144))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -286) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -309) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -514) (QUOTE (-1169)) (LIST (QUOTE -1249) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-563))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-545))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-307))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-145))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-816))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-172)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-905))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| (-1249 |#1| |#2| |#3|) (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-145)))))
(-1222 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4850,8 +4850,8 @@ NIL
NIL
(-1230 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4409 "*") |has| |#2| (-172)) (-4400 |has| |#2| (-555)) (-4403 |has| |#2| (-363)) (-4405 |has| |#2| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4032 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4032 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4405)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4032 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
+(((-4410 "*") |has| |#2| (-172)) (-4401 |has| |#2| (-555)) (-4404 |has| |#2| (-363)) (-4406 |has| |#2| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-905))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-555)))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-379)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-379))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -882) (QUOTE (-563)))) (|HasCategory| |#2| (LIST (QUOTE -882) (QUOTE (-563))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-379)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -611) (LIST (QUOTE -888) (QUOTE (-563)))))) (-12 (|HasCategory| (-1075) (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#2| (LIST (QUOTE -611) (QUOTE (-536))))) (|HasCategory| |#2| (QUOTE (-846))) (|HasCategory| |#2| (LIST (QUOTE -636) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (QUOTE (-563)))) (-4034 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| |#2| (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (-4034 (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-1144))) (|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasCategory| |#2| (QUOTE (-233))) (|HasAttribute| |#2| (QUOTE -4406)) (|HasCategory| |#2| (QUOTE (-452))) (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (-4034 (-12 (|HasCategory| $ (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-905)))) (|HasCategory| |#2| (QUOTE (-145)))))
(-1231 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
@@ -4862,15 +4862,15 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-452))) (|HasCategory| |#2| (QUOTE (-555))) (|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (QUOTE (-1144))))
(-1233 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4403 |has| |#1| (-363)) (-4405 |has| |#1| (-6 -4405)) (-4402 . T) (-4401 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4404 |has| |#1| (-363)) (-4406 |has| |#1| (-6 -4406)) (-4403 . T) (-4402 . T) (-4405 . T))
NIL
(-1234 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1105))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1693) (LIST (|devaluate| |#2|) (QUOTE (-1169))))))
+((|HasCategory| |#2| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1105))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1692) (LIST (|devaluate| |#2|) (QUOTE (-1169))))))
(-1235 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1236 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
@@ -4882,7 +4882,7 @@ NIL
NIL
(-1238 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1239 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
@@ -4890,24 +4890,24 @@ NIL
NIL
(-1240 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1241 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))))
(-1242 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4405 |has| |#1| (-363)) (-4399 |has| |#1| (-363)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4032 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4406 |has| |#1| (-363)) (-4400 |has| |#1| (-363)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#1| (QUOTE (-172))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563))) (|devaluate| |#1|)))) (|HasCategory| (-407 (-563)) (QUOTE (-1105))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-4034 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-555)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -407) (QUOTE (-563)))))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
(-1243 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4409 "*") |has| (-1242 |#2| |#3| |#4|) (-172)) (-4400 |has| (-1242 |#2| |#3| |#4|) (-555)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-172))) (-4032 (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-555))))
+(((-4410 "*") |has| (-1242 |#2| |#3| |#4|) (-172)) (-4401 |has| (-1242 |#2| |#3| |#4|) (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-145))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-172))) (-4034 (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563)))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| (-1242 |#2| |#3| |#4|) (LIST (QUOTE -1034) (QUOTE (-563)))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-363))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-452))) (|HasCategory| (-1242 |#2| |#3| |#4|) (QUOTE (-555))))
(-1244 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4408)))
+((|HasAttribute| |#1| (QUOTE -4409)))
(-1245 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
@@ -4919,20 +4919,20 @@ NIL
(-1247 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasSignature| |#2| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3698) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#2| (QUOTE (-955))) (|HasCategory| |#2| (QUOTE (-1193))) (|HasSignature| |#2| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2062) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1169))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#2| (QUOTE (-363))))
(-1248 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1249 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4409 "*") |has| |#1| (-172)) (-4400 |has| |#1| (-555)) (-4401 . T) (-4402 . T) (-4404 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4032 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -1693) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-4032 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -3698) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2606) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
+(((-4410 "*") |has| |#1| (-172)) (-4401 |has| |#1| (-555)) (-4402 . T) (-4403 . T) (-4405 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasCategory| |#1| (QUOTE (-555))) (-4034 (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-555)))) (|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-145))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (LIST (QUOTE -896) (QUOTE (-1169)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-767)) (|devaluate| |#1|)))) (|HasCategory| (-767) (QUOTE (-1105))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasSignature| |#1| (LIST (QUOTE -1692) (LIST (|devaluate| |#1|) (QUOTE (-1169)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-767))))) (|HasCategory| |#1| (QUOTE (-363))) (-4034 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-563)))) (|HasCategory| |#1| (QUOTE (-955))) (|HasCategory| |#1| (QUOTE (-1193))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasSignature| |#1| (LIST (QUOTE -2062) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1169))))) (|HasSignature| |#1| (LIST (QUOTE -2605) (LIST (LIST (QUOTE -640) (QUOTE (-1169))) (|devaluate| |#1|)))))))
(-1250 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1251 -3191 UP L UTS)
+(-1251 -3195 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-555))))
@@ -4950,7 +4950,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-998))) (|HasCategory| |#2| (QUOTE (-1045))) (|HasCategory| |#2| (QUOTE (-722))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
(-1255 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
NIL
(-1256 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
@@ -4958,8 +4958,8 @@ NIL
NIL
(-1257 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4408 . T) (-4407 . T))
-((-4032 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4032 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4032 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
+((-4409 . T) (-4408 . T))
+((-4034 (-12 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|))))) (-4034 (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858))))) (|HasCategory| |#1| (LIST (QUOTE -611) (QUOTE (-536)))) (-4034 (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093)))) (|HasCategory| |#1| (QUOTE (-846))) (|HasCategory| (-563) (QUOTE (-846))) (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-722))) (|HasCategory| |#1| (QUOTE (-1045))) (-12 (|HasCategory| |#1| (QUOTE (-998))) (|HasCategory| |#1| (QUOTE (-1045)))) (|HasCategory| |#1| (LIST (QUOTE -610) (QUOTE (-858)))) (-12 (|HasCategory| |#1| (QUOTE (-1093))) (|HasCategory| |#1| (LIST (QUOTE -309) (|devaluate| |#1|)))))
(-1258)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
@@ -4986,13 +4986,13 @@ NIL
NIL
(-1264 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4402 . T) (-4401 . T))
+((-4403 . T) (-4402 . T))
NIL
(-1265 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1266 K R UP -3191)
+(-1266 K R UP -3195)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -5006,56 +5006,56 @@ NIL
NIL
(-1269 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4402 |has| |#1| (-172)) (-4401 |has| |#1| (-172)) (-4404 . T))
+((-4403 |has| |#1| (-172)) (-4402 |has| |#1| (-172)) (-4405 . T))
((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))))
(-1270 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4408 . T) (-4407 . T))
+((-4409 . T) (-4408 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#4| (LIST (QUOTE -309) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -611) (QUOTE (-536)))) (|HasCategory| |#4| (QUOTE (-1093))) (|HasCategory| |#1| (QUOTE (-555))) (|HasCategory| |#3| (QUOTE (-368))) (|HasCategory| |#4| (LIST (QUOTE -610) (QUOTE (-858)))))
(-1271 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4401 . T) (-4402 . T) (-4404 . T))
+((-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1272 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4404 . T) (-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4400)))
+((-4405 . T) (-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4401)))
(-1273 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
(-1274 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T))
+((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T))
NIL
-(-1275 S -3191)
+(-1275 S -3195)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-368))) (|HasCategory| |#2| (QUOTE (-145))) (|HasCategory| |#2| (QUOTE (-147))))
-(-1276 -3191)
+(-1276 -3195)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4399 . T) (-4405 . T) (-4400 . T) ((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+((-4400 . T) (-4406 . T) (-4401 . T) ((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
(-1277 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -713) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasAttribute| |#2| (QUOTE -4400)))
+((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasCategory| |#2| (LIST (QUOTE -713) (LIST (QUOTE -407) (QUOTE (-563))))) (|HasAttribute| |#2| (QUOTE -4401)))
(-1278 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T))
+((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T))
NIL
(-1279 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4400 |has| |#1| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4400)))
+((-4401 |has| |#1| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasAttribute| |#1| (QUOTE -4401)))
(-1280 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4404 . T) (-4405 |has| |#1| (-6 -4405)) (-4400 |has| |#1| (-6 -4400)) (-4402 . T) (-4401 . T))
-((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4404)) (|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#1| (QUOTE -4400)))
+((-4405 . T) (-4406 |has| |#1| (-6 -4406)) (-4401 |has| |#1| (-6 -4401)) (-4403 . T) (-4402 . T))
+((|HasCategory| |#1| (QUOTE (-172))) (|HasCategory| |#1| (QUOTE (-363))) (|HasAttribute| |#1| (QUOTE -4405)) (|HasAttribute| |#1| (QUOTE -4406)) (|HasAttribute| |#1| (QUOTE -4401)))
(-1281 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4400 |has| |#2| (-6 -4400)) (-4402 . T) (-4401 . T) (-4404 . T))
-((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4400)))
+((-4401 |has| |#2| (-6 -4401)) (-4403 . T) (-4402 . T) (-4405 . T))
+((|HasCategory| |#2| (QUOTE (-172))) (|HasAttribute| |#2| (QUOTE -4401)))
(-1282 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
@@ -5070,7 +5070,7 @@ NIL
NIL
(-1285 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4409 "*") . T) (-4401 . T) (-4402 . T) (-4404 . T))
+(((-4410 "*") . T) (-4402 . T) (-4403 . T) (-4405 . T))
NIL
NIL
NIL
@@ -5088,4 +5088,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2282794 2282799 2282804 2282809) (-2 NIL 2282774 2282779 2282784 2282789) (-1 NIL 2282754 2282759 2282764 2282769) (0 NIL 2282734 2282739 2282744 2282749) (-1285 "ZMOD.spad" 2282543 2282556 2282672 2282729) (-1284 "ZLINDEP.spad" 2281587 2281598 2282533 2282538) (-1283 "ZDSOLVE.spad" 2271436 2271458 2281577 2281582) (-1282 "YSTREAM.spad" 2270929 2270940 2271426 2271431) (-1281 "XRPOLY.spad" 2270149 2270169 2270785 2270854) (-1280 "XPR.spad" 2267940 2267953 2269867 2269966) (-1279 "XPOLY.spad" 2267495 2267506 2267796 2267865) (-1278 "XPOLYC.spad" 2266812 2266828 2267421 2267490) (-1277 "XPBWPOLY.spad" 2265249 2265269 2266592 2266661) (-1276 "XF.spad" 2263710 2263725 2265151 2265244) (-1275 "XF.spad" 2262151 2262168 2263594 2263599) (-1274 "XFALG.spad" 2259175 2259191 2262077 2262146) (-1273 "XEXPPKG.spad" 2258426 2258452 2259165 2259170) (-1272 "XDPOLY.spad" 2258040 2258056 2258282 2258351) (-1271 "XALG.spad" 2257700 2257711 2257996 2258035) (-1270 "WUTSET.spad" 2253539 2253556 2257346 2257373) (-1269 "WP.spad" 2252738 2252782 2253397 2253464) (-1268 "WHILEAST.spad" 2252536 2252545 2252728 2252733) (-1267 "WHEREAST.spad" 2252207 2252216 2252526 2252531) (-1266 "WFFINTBS.spad" 2249770 2249792 2252197 2252202) (-1265 "WEIER.spad" 2247984 2247995 2249760 2249765) (-1264 "VSPACE.spad" 2247657 2247668 2247952 2247979) (-1263 "VSPACE.spad" 2247350 2247363 2247647 2247652) (-1262 "VOID.spad" 2247027 2247036 2247340 2247345) (-1261 "VIEW.spad" 2244649 2244658 2247017 2247022) (-1260 "VIEWDEF.spad" 2239846 2239855 2244639 2244644) (-1259 "VIEW3D.spad" 2223681 2223690 2239836 2239841) (-1258 "VIEW2D.spad" 2211418 2211427 2223671 2223676) (-1257 "VECTOR.spad" 2210093 2210104 2210344 2210371) (-1256 "VECTOR2.spad" 2208720 2208733 2210083 2210088) (-1255 "VECTCAT.spad" 2206620 2206631 2208688 2208715) (-1254 "VECTCAT.spad" 2204328 2204341 2206398 2206403) (-1253 "VARIABLE.spad" 2204108 2204123 2204318 2204323) (-1252 "UTYPE.spad" 2203752 2203761 2204098 2204103) (-1251 "UTSODETL.spad" 2203045 2203069 2203708 2203713) (-1250 "UTSODE.spad" 2201233 2201253 2203035 2203040) (-1249 "UTS.spad" 2196022 2196050 2199700 2199797) (-1248 "UTSCAT.spad" 2193473 2193489 2195920 2196017) (-1247 "UTSCAT.spad" 2190568 2190586 2193017 2193022) (-1246 "UTS2.spad" 2190161 2190196 2190558 2190563) (-1245 "URAGG.spad" 2184793 2184804 2190151 2190156) (-1244 "URAGG.spad" 2179389 2179402 2184749 2184754) (-1243 "UPXSSING.spad" 2177032 2177058 2178470 2178603) (-1242 "UPXS.spad" 2174180 2174208 2175164 2175313) (-1241 "UPXSCONS.spad" 2171937 2171957 2172312 2172461) (-1240 "UPXSCCA.spad" 2170502 2170522 2171783 2171932) (-1239 "UPXSCCA.spad" 2169209 2169231 2170492 2170497) (-1238 "UPXSCAT.spad" 2167790 2167806 2169055 2169204) (-1237 "UPXS2.spad" 2167331 2167384 2167780 2167785) (-1236 "UPSQFREE.spad" 2165743 2165757 2167321 2167326) (-1235 "UPSCAT.spad" 2163336 2163360 2165641 2165738) (-1234 "UPSCAT.spad" 2160635 2160661 2162942 2162947) (-1233 "UPOLYC.spad" 2155613 2155624 2160477 2160630) (-1232 "UPOLYC.spad" 2150483 2150496 2155349 2155354) (-1231 "UPOLYC2.spad" 2149952 2149971 2150473 2150478) (-1230 "UP.spad" 2147109 2147124 2147502 2147655) (-1229 "UPMP.spad" 2145999 2146012 2147099 2147104) (-1228 "UPDIVP.spad" 2145562 2145576 2145989 2145994) (-1227 "UPDECOMP.spad" 2143799 2143813 2145552 2145557) (-1226 "UPCDEN.spad" 2143006 2143022 2143789 2143794) (-1225 "UP2.spad" 2142368 2142389 2142996 2143001) (-1224 "UNISEG.spad" 2141721 2141732 2142287 2142292) (-1223 "UNISEG2.spad" 2141214 2141227 2141677 2141682) (-1222 "UNIFACT.spad" 2140315 2140327 2141204 2141209) (-1221 "ULS.spad" 2130867 2130895 2131960 2132389) (-1220 "ULSCONS.spad" 2123261 2123281 2123633 2123782) (-1219 "ULSCCAT.spad" 2120990 2121010 2123107 2123256) (-1218 "ULSCCAT.spad" 2118827 2118849 2120946 2120951) (-1217 "ULSCAT.spad" 2117043 2117059 2118673 2118822) (-1216 "ULS2.spad" 2116555 2116608 2117033 2117038) (-1215 "UINT8.spad" 2116432 2116441 2116545 2116550) (-1214 "UINT32.spad" 2116308 2116317 2116422 2116427) (-1213 "UINT16.spad" 2116184 2116193 2116298 2116303) (-1212 "UFD.spad" 2115249 2115258 2116110 2116179) (-1211 "UFD.spad" 2114376 2114387 2115239 2115244) (-1210 "UDVO.spad" 2113223 2113232 2114366 2114371) (-1209 "UDPO.spad" 2110650 2110661 2113179 2113184) (-1208 "TYPE.spad" 2110582 2110591 2110640 2110645) (-1207 "TYPEAST.spad" 2110501 2110510 2110572 2110577) (-1206 "TWOFACT.spad" 2109151 2109166 2110491 2110496) (-1205 "TUPLE.spad" 2108635 2108646 2109050 2109055) (-1204 "TUBETOOL.spad" 2105472 2105481 2108625 2108630) (-1203 "TUBE.spad" 2104113 2104130 2105462 2105467) (-1202 "TS.spad" 2102702 2102718 2103678 2103775) (-1201 "TSETCAT.spad" 2089829 2089846 2102670 2102697) (-1200 "TSETCAT.spad" 2076942 2076961 2089785 2089790) (-1199 "TRMANIP.spad" 2071308 2071325 2076648 2076653) (-1198 "TRIMAT.spad" 2070267 2070292 2071298 2071303) (-1197 "TRIGMNIP.spad" 2068784 2068801 2070257 2070262) (-1196 "TRIGCAT.spad" 2068296 2068305 2068774 2068779) (-1195 "TRIGCAT.spad" 2067806 2067817 2068286 2068291) (-1194 "TREE.spad" 2066377 2066388 2067413 2067440) (-1193 "TRANFUN.spad" 2066208 2066217 2066367 2066372) (-1192 "TRANFUN.spad" 2066037 2066048 2066198 2066203) (-1191 "TOPSP.spad" 2065711 2065720 2066027 2066032) (-1190 "TOOLSIGN.spad" 2065374 2065385 2065701 2065706) (-1189 "TEXTFILE.spad" 2063931 2063940 2065364 2065369) (-1188 "TEX.spad" 2061063 2061072 2063921 2063926) (-1187 "TEX1.spad" 2060619 2060630 2061053 2061058) (-1186 "TEMUTL.spad" 2060174 2060183 2060609 2060614) (-1185 "TBCMPPK.spad" 2058267 2058290 2060164 2060169) (-1184 "TBAGG.spad" 2057303 2057326 2058247 2058262) (-1183 "TBAGG.spad" 2056347 2056372 2057293 2057298) (-1182 "TANEXP.spad" 2055723 2055734 2056337 2056342) (-1181 "TABLE.spad" 2054134 2054157 2054404 2054431) (-1180 "TABLEAU.spad" 2053615 2053626 2054124 2054129) (-1179 "TABLBUMP.spad" 2050398 2050409 2053605 2053610) (-1178 "SYSTEM.spad" 2049672 2049681 2050388 2050393) (-1177 "SYSSOLP.spad" 2047145 2047156 2049662 2049667) (-1176 "SYSNNI.spad" 2046321 2046332 2047135 2047140) (-1175 "SYSINT.spad" 2045794 2045805 2046311 2046316) (-1174 "SYNTAX.spad" 2042064 2042073 2045784 2045789) (-1173 "SYMTAB.spad" 2040120 2040129 2042054 2042059) (-1172 "SYMS.spad" 2036105 2036114 2040110 2040115) (-1171 "SYMPOLY.spad" 2035112 2035123 2035194 2035321) (-1170 "SYMFUNC.spad" 2034587 2034598 2035102 2035107) (-1169 "SYMBOL.spad" 2032014 2032023 2034577 2034582) (-1168 "SWITCH.spad" 2028771 2028780 2032004 2032009) (-1167 "SUTS.spad" 2025670 2025698 2027238 2027335) (-1166 "SUPXS.spad" 2022805 2022833 2023802 2023951) (-1165 "SUP.spad" 2019574 2019585 2020355 2020508) (-1164 "SUPFRACF.spad" 2018679 2018697 2019564 2019569) (-1163 "SUP2.spad" 2018069 2018082 2018669 2018674) (-1162 "SUMRF.spad" 2017035 2017046 2018059 2018064) (-1161 "SUMFS.spad" 2016668 2016685 2017025 2017030) (-1160 "SULS.spad" 2007207 2007235 2008313 2008742) (-1159 "SUCHTAST.spad" 2006976 2006985 2007197 2007202) (-1158 "SUCH.spad" 2006656 2006671 2006966 2006971) (-1157 "SUBSPACE.spad" 1998663 1998678 2006646 2006651) (-1156 "SUBRESP.spad" 1997823 1997837 1998619 1998624) (-1155 "STTF.spad" 1993922 1993938 1997813 1997818) (-1154 "STTFNC.spad" 1990390 1990406 1993912 1993917) (-1153 "STTAYLOR.spad" 1982788 1982799 1990271 1990276) (-1152 "STRTBL.spad" 1981293 1981310 1981442 1981469) (-1151 "STRING.spad" 1980702 1980711 1980716 1980743) (-1150 "STRICAT.spad" 1980490 1980499 1980670 1980697) (-1149 "STREAM.spad" 1977348 1977359 1980015 1980030) (-1148 "STREAM3.spad" 1976893 1976908 1977338 1977343) (-1147 "STREAM2.spad" 1975961 1975974 1976883 1976888) (-1146 "STREAM1.spad" 1975665 1975676 1975951 1975956) (-1145 "STINPROD.spad" 1974571 1974587 1975655 1975660) (-1144 "STEP.spad" 1973772 1973781 1974561 1974566) (-1143 "STBL.spad" 1972298 1972326 1972465 1972480) (-1142 "STAGG.spad" 1971373 1971384 1972288 1972293) (-1141 "STAGG.spad" 1970446 1970459 1971363 1971368) (-1140 "STACK.spad" 1969797 1969808 1970053 1970080) (-1139 "SREGSET.spad" 1967501 1967518 1969443 1969470) (-1138 "SRDCMPK.spad" 1966046 1966066 1967491 1967496) (-1137 "SRAGG.spad" 1961143 1961152 1966014 1966041) (-1136 "SRAGG.spad" 1956260 1956271 1961133 1961138) (-1135 "SQMATRIX.spad" 1953876 1953894 1954792 1954879) (-1134 "SPLTREE.spad" 1948428 1948441 1953312 1953339) (-1133 "SPLNODE.spad" 1945016 1945029 1948418 1948423) (-1132 "SPFCAT.spad" 1943793 1943802 1945006 1945011) (-1131 "SPECOUT.spad" 1942343 1942352 1943783 1943788) (-1130 "SPADXPT.spad" 1934482 1934491 1942333 1942338) (-1129 "spad-parser.spad" 1933947 1933956 1934472 1934477) (-1128 "SPADAST.spad" 1933648 1933657 1933937 1933942) (-1127 "SPACEC.spad" 1917661 1917672 1933638 1933643) (-1126 "SPACE3.spad" 1917437 1917448 1917651 1917656) (-1125 "SORTPAK.spad" 1916982 1916995 1917393 1917398) (-1124 "SOLVETRA.spad" 1914739 1914750 1916972 1916977) (-1123 "SOLVESER.spad" 1913259 1913270 1914729 1914734) (-1122 "SOLVERAD.spad" 1909269 1909280 1913249 1913254) (-1121 "SOLVEFOR.spad" 1907689 1907707 1909259 1909264) (-1120 "SNTSCAT.spad" 1907289 1907306 1907657 1907684) (-1119 "SMTS.spad" 1905549 1905575 1906854 1906951) (-1118 "SMP.spad" 1902988 1903008 1903378 1903505) (-1117 "SMITH.spad" 1901831 1901856 1902978 1902983) (-1116 "SMATCAT.spad" 1899941 1899971 1901775 1901826) (-1115 "SMATCAT.spad" 1897983 1898015 1899819 1899824) (-1114 "SKAGG.spad" 1896944 1896955 1897951 1897978) (-1113 "SINT.spad" 1895770 1895779 1896810 1896939) (-1112 "SIMPAN.spad" 1895498 1895507 1895760 1895765) (-1111 "SIG.spad" 1894826 1894835 1895488 1895493) (-1110 "SIGNRF.spad" 1893934 1893945 1894816 1894821) (-1109 "SIGNEF.spad" 1893203 1893220 1893924 1893929) (-1108 "SIGAST.spad" 1892584 1892593 1893193 1893198) (-1107 "SHP.spad" 1890502 1890517 1892540 1892545) (-1106 "SHDP.spad" 1880213 1880240 1880722 1880853) (-1105 "SGROUP.spad" 1879821 1879830 1880203 1880208) (-1104 "SGROUP.spad" 1879427 1879438 1879811 1879816) (-1103 "SGCF.spad" 1872308 1872317 1879417 1879422) (-1102 "SFRTCAT.spad" 1871236 1871253 1872276 1872303) (-1101 "SFRGCD.spad" 1870299 1870319 1871226 1871231) (-1100 "SFQCMPK.spad" 1864936 1864956 1870289 1870294) (-1099 "SFORT.spad" 1864371 1864385 1864926 1864931) (-1098 "SEXOF.spad" 1864214 1864254 1864361 1864366) (-1097 "SEX.spad" 1864106 1864115 1864204 1864209) (-1096 "SEXCAT.spad" 1861657 1861697 1864096 1864101) (-1095 "SET.spad" 1859957 1859968 1861078 1861117) (-1094 "SETMN.spad" 1858391 1858408 1859947 1859952) (-1093 "SETCAT.spad" 1857876 1857885 1858381 1858386) (-1092 "SETCAT.spad" 1857359 1857370 1857866 1857871) (-1091 "SETAGG.spad" 1853880 1853891 1857339 1857354) (-1090 "SETAGG.spad" 1850409 1850422 1853870 1853875) (-1089 "SEQAST.spad" 1850112 1850121 1850399 1850404) (-1088 "SEGXCAT.spad" 1849234 1849247 1850102 1850107) (-1087 "SEG.spad" 1849047 1849058 1849153 1849158) (-1086 "SEGCAT.spad" 1847954 1847965 1849037 1849042) (-1085 "SEGBIND.spad" 1847026 1847037 1847909 1847914) (-1084 "SEGBIND2.spad" 1846722 1846735 1847016 1847021) (-1083 "SEGAST.spad" 1846436 1846445 1846712 1846717) (-1082 "SEG2.spad" 1845861 1845874 1846392 1846397) (-1081 "SDVAR.spad" 1845137 1845148 1845851 1845856) (-1080 "SDPOL.spad" 1842527 1842538 1842818 1842945) (-1079 "SCPKG.spad" 1840606 1840617 1842517 1842522) (-1078 "SCOPE.spad" 1839751 1839760 1840596 1840601) (-1077 "SCACHE.spad" 1838433 1838444 1839741 1839746) (-1076 "SASTCAT.spad" 1838342 1838351 1838423 1838428) (-1075 "SAOS.spad" 1838214 1838223 1838332 1838337) (-1074 "SAERFFC.spad" 1837927 1837947 1838204 1838209) (-1073 "SAE.spad" 1836102 1836118 1836713 1836848) (-1072 "SAEFACT.spad" 1835803 1835823 1836092 1836097) (-1071 "RURPK.spad" 1833444 1833460 1835793 1835798) (-1070 "RULESET.spad" 1832885 1832909 1833434 1833439) (-1069 "RULE.spad" 1831089 1831113 1832875 1832880) (-1068 "RULECOLD.spad" 1830941 1830954 1831079 1831084) (-1067 "RSTRCAST.spad" 1830658 1830667 1830931 1830936) (-1066 "RSETGCD.spad" 1827036 1827056 1830648 1830653) (-1065 "RSETCAT.spad" 1816820 1816837 1827004 1827031) (-1064 "RSETCAT.spad" 1806624 1806643 1816810 1816815) (-1063 "RSDCMPK.spad" 1805076 1805096 1806614 1806619) (-1062 "RRCC.spad" 1803460 1803490 1805066 1805071) (-1061 "RRCC.spad" 1801842 1801874 1803450 1803455) (-1060 "RPTAST.spad" 1801544 1801553 1801832 1801837) (-1059 "RPOLCAT.spad" 1780904 1780919 1801412 1801539) (-1058 "RPOLCAT.spad" 1759978 1759995 1780488 1780493) (-1057 "ROUTINE.spad" 1755841 1755850 1758625 1758652) (-1056 "ROMAN.spad" 1755169 1755178 1755707 1755836) (-1055 "ROIRC.spad" 1754249 1754281 1755159 1755164) (-1054 "RNS.spad" 1753152 1753161 1754151 1754244) (-1053 "RNS.spad" 1752141 1752152 1753142 1753147) (-1052 "RNG.spad" 1751876 1751885 1752131 1752136) (-1051 "RMODULE.spad" 1751514 1751525 1751866 1751871) (-1050 "RMCAT2.spad" 1750922 1750979 1751504 1751509) (-1049 "RMATRIX.spad" 1749746 1749765 1750089 1750128) (-1048 "RMATCAT.spad" 1745279 1745310 1749702 1749741) (-1047 "RMATCAT.spad" 1740702 1740735 1745127 1745132) (-1046 "RINTERP.spad" 1740590 1740610 1740692 1740697) (-1045 "RING.spad" 1740060 1740069 1740570 1740585) (-1044 "RING.spad" 1739538 1739549 1740050 1740055) (-1043 "RIDIST.spad" 1738922 1738931 1739528 1739533) (-1042 "RGCHAIN.spad" 1737501 1737517 1738407 1738434) (-1041 "RGBCSPC.spad" 1737282 1737294 1737491 1737496) (-1040 "RGBCMDL.spad" 1736812 1736824 1737272 1737277) (-1039 "RF.spad" 1734426 1734437 1736802 1736807) (-1038 "RFFACTOR.spad" 1733888 1733899 1734416 1734421) (-1037 "RFFACT.spad" 1733623 1733635 1733878 1733883) (-1036 "RFDIST.spad" 1732611 1732620 1733613 1733618) (-1035 "RETSOL.spad" 1732028 1732041 1732601 1732606) (-1034 "RETRACT.spad" 1731456 1731467 1732018 1732023) (-1033 "RETRACT.spad" 1730882 1730895 1731446 1731451) (-1032 "RETAST.spad" 1730694 1730703 1730872 1730877) (-1031 "RESULT.spad" 1728754 1728763 1729341 1729368) (-1030 "RESRING.spad" 1728101 1728148 1728692 1728749) (-1029 "RESLATC.spad" 1727425 1727436 1728091 1728096) (-1028 "REPSQ.spad" 1727154 1727165 1727415 1727420) (-1027 "REP.spad" 1724706 1724715 1727144 1727149) (-1026 "REPDB.spad" 1724411 1724422 1724696 1724701) (-1025 "REP2.spad" 1713983 1713994 1724253 1724258) (-1024 "REP1.spad" 1707973 1707984 1713933 1713938) (-1023 "REGSET.spad" 1705770 1705787 1707619 1707646) (-1022 "REF.spad" 1705099 1705110 1705725 1705730) (-1021 "REDORDER.spad" 1704275 1704292 1705089 1705094) (-1020 "RECLOS.spad" 1703058 1703078 1703762 1703855) (-1019 "REALSOLV.spad" 1702190 1702199 1703048 1703053) (-1018 "REAL.spad" 1702062 1702071 1702180 1702185) (-1017 "REAL0Q.spad" 1699344 1699359 1702052 1702057) (-1016 "REAL0.spad" 1696172 1696187 1699334 1699339) (-1015 "RDUCEAST.spad" 1695893 1695902 1696162 1696167) (-1014 "RDIV.spad" 1695544 1695569 1695883 1695888) (-1013 "RDIST.spad" 1695107 1695118 1695534 1695539) (-1012 "RDETRS.spad" 1693903 1693921 1695097 1695102) (-1011 "RDETR.spad" 1692010 1692028 1693893 1693898) (-1010 "RDEEFS.spad" 1691083 1691100 1692000 1692005) (-1009 "RDEEF.spad" 1690079 1690096 1691073 1691078) (-1008 "RCFIELD.spad" 1687265 1687274 1689981 1690074) (-1007 "RCFIELD.spad" 1684537 1684548 1687255 1687260) (-1006 "RCAGG.spad" 1682449 1682460 1684527 1684532) (-1005 "RCAGG.spad" 1680288 1680301 1682368 1682373) (-1004 "RATRET.spad" 1679648 1679659 1680278 1680283) (-1003 "RATFACT.spad" 1679340 1679352 1679638 1679643) (-1002 "RANDSRC.spad" 1678659 1678668 1679330 1679335) (-1001 "RADUTIL.spad" 1678413 1678422 1678649 1678654) (-1000 "RADIX.spad" 1675314 1675328 1676880 1676973) (-999 "RADFF.spad" 1673728 1673764 1673846 1674002) (-998 "RADCAT.spad" 1673322 1673330 1673718 1673723) (-997 "RADCAT.spad" 1672914 1672924 1673312 1673317) (-996 "QUEUE.spad" 1672257 1672267 1672521 1672548) (-995 "QUAT.spad" 1670839 1670849 1671181 1671246) (-994 "QUATCT2.spad" 1670458 1670476 1670829 1670834) (-993 "QUATCAT.spad" 1668623 1668633 1670388 1670453) (-992 "QUATCAT.spad" 1666539 1666551 1668306 1668311) (-991 "QUAGG.spad" 1665365 1665375 1666507 1666534) (-990 "QQUTAST.spad" 1665134 1665142 1665355 1665360) (-989 "QFORM.spad" 1664597 1664611 1665124 1665129) (-988 "QFCAT.spad" 1663300 1663310 1664499 1664592) (-987 "QFCAT.spad" 1661594 1661606 1662795 1662800) (-986 "QFCAT2.spad" 1661285 1661301 1661584 1661589) (-985 "QEQUAT.spad" 1660842 1660850 1661275 1661280) (-984 "QCMPACK.spad" 1655589 1655608 1660832 1660837) (-983 "QALGSET.spad" 1651664 1651696 1655503 1655508) (-982 "QALGSET2.spad" 1649660 1649678 1651654 1651659) (-981 "PWFFINTB.spad" 1646970 1646991 1649650 1649655) (-980 "PUSHVAR.spad" 1646299 1646318 1646960 1646965) (-979 "PTRANFN.spad" 1642425 1642435 1646289 1646294) (-978 "PTPACK.spad" 1639513 1639523 1642415 1642420) (-977 "PTFUNC2.spad" 1639334 1639348 1639503 1639508) (-976 "PTCAT.spad" 1638583 1638593 1639302 1639329) (-975 "PSQFR.spad" 1637890 1637914 1638573 1638578) (-974 "PSEUDLIN.spad" 1636748 1636758 1637880 1637885) (-973 "PSETPK.spad" 1622181 1622197 1636626 1636631) (-972 "PSETCAT.spad" 1616101 1616124 1622161 1622176) (-971 "PSETCAT.spad" 1609995 1610020 1616057 1616062) (-970 "PSCURVE.spad" 1608978 1608986 1609985 1609990) (-969 "PSCAT.spad" 1607745 1607774 1608876 1608973) (-968 "PSCAT.spad" 1606602 1606633 1607735 1607740) (-967 "PRTITION.spad" 1605547 1605555 1606592 1606597) (-966 "PRTDAST.spad" 1605266 1605274 1605537 1605542) (-965 "PRS.spad" 1594828 1594845 1605222 1605227) (-964 "PRQAGG.spad" 1594259 1594269 1594796 1594823) (-963 "PROPLOG.spad" 1593662 1593670 1594249 1594254) (-962 "PROPFRML.spad" 1591580 1591591 1593652 1593657) (-961 "PROPERTY.spad" 1591074 1591082 1591570 1591575) (-960 "PRODUCT.spad" 1588754 1588766 1589040 1589095) (-959 "PR.spad" 1587140 1587152 1587845 1587972) (-958 "PRINT.spad" 1586892 1586900 1587130 1587135) (-957 "PRIMES.spad" 1585143 1585153 1586882 1586887) (-956 "PRIMELT.spad" 1583124 1583138 1585133 1585138) (-955 "PRIMCAT.spad" 1582747 1582755 1583114 1583119) (-954 "PRIMARR.spad" 1581752 1581762 1581930 1581957) (-953 "PRIMARR2.spad" 1580475 1580487 1581742 1581747) (-952 "PREASSOC.spad" 1579847 1579859 1580465 1580470) (-951 "PPCURVE.spad" 1578984 1578992 1579837 1579842) (-950 "PORTNUM.spad" 1578759 1578767 1578974 1578979) (-949 "POLYROOT.spad" 1577588 1577610 1578715 1578720) (-948 "POLY.spad" 1574885 1574895 1575402 1575529) (-947 "POLYLIFT.spad" 1574146 1574169 1574875 1574880) (-946 "POLYCATQ.spad" 1572248 1572270 1574136 1574141) (-945 "POLYCAT.spad" 1565654 1565675 1572116 1572243) (-944 "POLYCAT.spad" 1558362 1558385 1564826 1564831) (-943 "POLY2UP.spad" 1557810 1557824 1558352 1558357) (-942 "POLY2.spad" 1557405 1557417 1557800 1557805) (-941 "POLUTIL.spad" 1556346 1556375 1557361 1557366) (-940 "POLTOPOL.spad" 1555094 1555109 1556336 1556341) (-939 "POINT.spad" 1553933 1553943 1554020 1554047) (-938 "PNTHEORY.spad" 1550599 1550607 1553923 1553928) (-937 "PMTOOLS.spad" 1549356 1549370 1550589 1550594) (-936 "PMSYM.spad" 1548901 1548911 1549346 1549351) (-935 "PMQFCAT.spad" 1548488 1548502 1548891 1548896) (-934 "PMPRED.spad" 1547957 1547971 1548478 1548483) (-933 "PMPREDFS.spad" 1547401 1547423 1547947 1547952) (-932 "PMPLCAT.spad" 1546471 1546489 1547333 1547338) (-931 "PMLSAGG.spad" 1546052 1546066 1546461 1546466) (-930 "PMKERNEL.spad" 1545619 1545631 1546042 1546047) (-929 "PMINS.spad" 1545195 1545205 1545609 1545614) (-928 "PMFS.spad" 1544768 1544786 1545185 1545190) (-927 "PMDOWN.spad" 1544054 1544068 1544758 1544763) (-926 "PMASS.spad" 1543066 1543074 1544044 1544049) (-925 "PMASSFS.spad" 1542035 1542051 1543056 1543061) (-924 "PLOTTOOL.spad" 1541815 1541823 1542025 1542030) (-923 "PLOT.spad" 1536646 1536654 1541805 1541810) (-922 "PLOT3D.spad" 1533066 1533074 1536636 1536641) (-921 "PLOT1.spad" 1532207 1532217 1533056 1533061) (-920 "PLEQN.spad" 1519423 1519450 1532197 1532202) (-919 "PINTERP.spad" 1519039 1519058 1519413 1519418) (-918 "PINTERPA.spad" 1518821 1518837 1519029 1519034) (-917 "PI.spad" 1518428 1518436 1518795 1518816) (-916 "PID.spad" 1517384 1517392 1518354 1518423) (-915 "PICOERCE.spad" 1517041 1517051 1517374 1517379) (-914 "PGROEB.spad" 1515638 1515652 1517031 1517036) (-913 "PGE.spad" 1506891 1506899 1515628 1515633) (-912 "PGCD.spad" 1505773 1505790 1506881 1506886) (-911 "PFRPAC.spad" 1504916 1504926 1505763 1505768) (-910 "PFR.spad" 1501573 1501583 1504818 1504911) (-909 "PFOTOOLS.spad" 1500831 1500847 1501563 1501568) (-908 "PFOQ.spad" 1500201 1500219 1500821 1500826) (-907 "PFO.spad" 1499620 1499647 1500191 1500196) (-906 "PF.spad" 1499194 1499206 1499425 1499518) (-905 "PFECAT.spad" 1496860 1496868 1499120 1499189) (-904 "PFECAT.spad" 1494554 1494564 1496816 1496821) (-903 "PFBRU.spad" 1492424 1492436 1494544 1494549) (-902 "PFBR.spad" 1489962 1489985 1492414 1492419) (-901 "PERM.spad" 1485643 1485653 1489792 1489807) (-900 "PERMGRP.spad" 1480379 1480389 1485633 1485638) (-899 "PERMCAT.spad" 1478931 1478941 1480359 1480374) (-898 "PERMAN.spad" 1477463 1477477 1478921 1478926) (-897 "PENDTREE.spad" 1476802 1476812 1477092 1477097) (-896 "PDRING.spad" 1475293 1475303 1476782 1476797) (-895 "PDRING.spad" 1473792 1473804 1475283 1475288) (-894 "PDEPROB.spad" 1472807 1472815 1473782 1473787) (-893 "PDEPACK.spad" 1466809 1466817 1472797 1472802) (-892 "PDECOMP.spad" 1466271 1466288 1466799 1466804) (-891 "PDECAT.spad" 1464625 1464633 1466261 1466266) (-890 "PCOMP.spad" 1464476 1464489 1464615 1464620) (-889 "PBWLB.spad" 1463058 1463075 1464466 1464471) (-888 "PATTERN.spad" 1457489 1457499 1463048 1463053) (-887 "PATTERN2.spad" 1457225 1457237 1457479 1457484) (-886 "PATTERN1.spad" 1455527 1455543 1457215 1457220) (-885 "PATRES.spad" 1453074 1453086 1455517 1455522) (-884 "PATRES2.spad" 1452736 1452750 1453064 1453069) (-883 "PATMATCH.spad" 1450893 1450924 1452444 1452449) (-882 "PATMAB.spad" 1450318 1450328 1450883 1450888) (-881 "PATLRES.spad" 1449402 1449416 1450308 1450313) (-880 "PATAB.spad" 1449166 1449176 1449392 1449397) (-879 "PARTPERM.spad" 1446528 1446536 1449156 1449161) (-878 "PARSURF.spad" 1445956 1445984 1446518 1446523) (-877 "PARSU2.spad" 1445751 1445767 1445946 1445951) (-876 "script-parser.spad" 1445271 1445279 1445741 1445746) (-875 "PARSCURV.spad" 1444699 1444727 1445261 1445266) (-874 "PARSC2.spad" 1444488 1444504 1444689 1444694) (-873 "PARPCURV.spad" 1443946 1443974 1444478 1444483) (-872 "PARPC2.spad" 1443735 1443751 1443936 1443941) (-871 "PAN2EXPR.spad" 1443147 1443155 1443725 1443730) (-870 "PALETTE.spad" 1442117 1442125 1443137 1443142) (-869 "PAIR.spad" 1441100 1441113 1441705 1441710) (-868 "PADICRC.spad" 1438430 1438448 1439605 1439698) (-867 "PADICRAT.spad" 1436445 1436457 1436666 1436759) (-866 "PADIC.spad" 1436140 1436152 1436371 1436440) (-865 "PADICCT.spad" 1434681 1434693 1436066 1436135) (-864 "PADEPAC.spad" 1433360 1433379 1434671 1434676) (-863 "PADE.spad" 1432100 1432116 1433350 1433355) (-862 "OWP.spad" 1431340 1431370 1431958 1432025) (-861 "OVERSET.spad" 1430913 1430921 1431330 1431335) (-860 "OVAR.spad" 1430694 1430717 1430903 1430908) (-859 "OUT.spad" 1429778 1429786 1430684 1430689) (-858 "OUTFORM.spad" 1419074 1419082 1429768 1429773) (-857 "OUTBFILE.spad" 1418492 1418500 1419064 1419069) (-856 "OUTBCON.spad" 1417490 1417498 1418482 1418487) (-855 "OUTBCON.spad" 1416486 1416496 1417480 1417485) (-854 "OSI.spad" 1415961 1415969 1416476 1416481) (-853 "OSGROUP.spad" 1415879 1415887 1415951 1415956) (-852 "ORTHPOL.spad" 1414340 1414350 1415796 1415801) (-851 "OREUP.spad" 1413793 1413821 1414020 1414059) (-850 "ORESUP.spad" 1413092 1413116 1413473 1413512) (-849 "OREPCTO.spad" 1410911 1410923 1413012 1413017) (-848 "OREPCAT.spad" 1404968 1404978 1410867 1410906) (-847 "OREPCAT.spad" 1398915 1398927 1404816 1404821) (-846 "ORDSET.spad" 1398081 1398089 1398905 1398910) (-845 "ORDSET.spad" 1397245 1397255 1398071 1398076) (-844 "ORDRING.spad" 1396635 1396643 1397225 1397240) (-843 "ORDRING.spad" 1396033 1396043 1396625 1396630) (-842 "ORDMON.spad" 1395888 1395896 1396023 1396028) (-841 "ORDFUNS.spad" 1395014 1395030 1395878 1395883) (-840 "ORDFIN.spad" 1394834 1394842 1395004 1395009) (-839 "ORDCOMP.spad" 1393299 1393309 1394381 1394410) (-838 "ORDCOMP2.spad" 1392584 1392596 1393289 1393294) (-837 "OPTPROB.spad" 1391222 1391230 1392574 1392579) (-836 "OPTPACK.spad" 1383607 1383615 1391212 1391217) (-835 "OPTCAT.spad" 1381282 1381290 1383597 1383602) (-834 "OPSIG.spad" 1380934 1380942 1381272 1381277) (-833 "OPQUERY.spad" 1380483 1380491 1380924 1380929) (-832 "OP.spad" 1380225 1380235 1380305 1380372) (-831 "OPERCAT.spad" 1379813 1379823 1380215 1380220) (-830 "OPERCAT.spad" 1379399 1379411 1379803 1379808) (-829 "ONECOMP.spad" 1378144 1378154 1378946 1378975) (-828 "ONECOMP2.spad" 1377562 1377574 1378134 1378139) (-827 "OMSERVER.spad" 1376564 1376572 1377552 1377557) (-826 "OMSAGG.spad" 1376352 1376362 1376520 1376559) (-825 "OMPKG.spad" 1374964 1374972 1376342 1376347) (-824 "OM.spad" 1373929 1373937 1374954 1374959) (-823 "OMLO.spad" 1373354 1373366 1373815 1373854) (-822 "OMEXPR.spad" 1373188 1373198 1373344 1373349) (-821 "OMERR.spad" 1372731 1372739 1373178 1373183) (-820 "OMERRK.spad" 1371765 1371773 1372721 1372726) (-819 "OMENC.spad" 1371109 1371117 1371755 1371760) (-818 "OMDEV.spad" 1365398 1365406 1371099 1371104) (-817 "OMCONN.spad" 1364807 1364815 1365388 1365393) (-816 "OINTDOM.spad" 1364570 1364578 1364733 1364802) (-815 "OFMONOID.spad" 1360757 1360767 1364560 1364565) (-814 "ODVAR.spad" 1360018 1360028 1360747 1360752) (-813 "ODR.spad" 1359662 1359688 1359830 1359979) (-812 "ODPOL.spad" 1357008 1357018 1357348 1357475) (-811 "ODP.spad" 1346855 1346875 1347228 1347359) (-810 "ODETOOLS.spad" 1345438 1345457 1346845 1346850) (-809 "ODESYS.spad" 1343088 1343105 1345428 1345433) (-808 "ODERTRIC.spad" 1339029 1339046 1343045 1343050) (-807 "ODERED.spad" 1338416 1338440 1339019 1339024) (-806 "ODERAT.spad" 1335967 1335984 1338406 1338411) (-805 "ODEPRRIC.spad" 1332858 1332880 1335957 1335962) (-804 "ODEPROB.spad" 1332115 1332123 1332848 1332853) (-803 "ODEPRIM.spad" 1329389 1329411 1332105 1332110) (-802 "ODEPAL.spad" 1328765 1328789 1329379 1329384) (-801 "ODEPACK.spad" 1315367 1315375 1328755 1328760) (-800 "ODEINT.spad" 1314798 1314814 1315357 1315362) (-799 "ODEIFTBL.spad" 1312193 1312201 1314788 1314793) (-798 "ODEEF.spad" 1307560 1307576 1312183 1312188) (-797 "ODECONST.spad" 1307079 1307097 1307550 1307555) (-796 "ODECAT.spad" 1305675 1305683 1307069 1307074) (-795 "OCT.spad" 1303813 1303823 1304529 1304568) (-794 "OCTCT2.spad" 1303457 1303478 1303803 1303808) (-793 "OC.spad" 1301231 1301241 1303413 1303452) (-792 "OC.spad" 1298730 1298742 1300914 1300919) (-791 "OCAMON.spad" 1298578 1298586 1298720 1298725) (-790 "OASGP.spad" 1298393 1298401 1298568 1298573) (-789 "OAMONS.spad" 1297913 1297921 1298383 1298388) (-788 "OAMON.spad" 1297774 1297782 1297903 1297908) (-787 "OAGROUP.spad" 1297636 1297644 1297764 1297769) (-786 "NUMTUBE.spad" 1297223 1297239 1297626 1297631) (-785 "NUMQUAD.spad" 1285085 1285093 1297213 1297218) (-784 "NUMODE.spad" 1276221 1276229 1285075 1285080) (-783 "NUMINT.spad" 1273779 1273787 1276211 1276216) (-782 "NUMFMT.spad" 1272619 1272627 1273769 1273774) (-781 "NUMERIC.spad" 1264691 1264701 1272424 1272429) (-780 "NTSCAT.spad" 1263193 1263209 1264659 1264686) (-779 "NTPOLFN.spad" 1262738 1262748 1263110 1263115) (-778 "NSUP.spad" 1255748 1255758 1260288 1260441) (-777 "NSUP2.spad" 1255140 1255152 1255738 1255743) (-776 "NSMP.spad" 1251335 1251354 1251643 1251770) (-775 "NREP.spad" 1249707 1249721 1251325 1251330) (-774 "NPCOEF.spad" 1248953 1248973 1249697 1249702) (-773 "NORMRETR.spad" 1248551 1248590 1248943 1248948) (-772 "NORMPK.spad" 1246453 1246472 1248541 1248546) (-771 "NORMMA.spad" 1246141 1246167 1246443 1246448) (-770 "NONE.spad" 1245882 1245890 1246131 1246136) (-769 "NONE1.spad" 1245558 1245568 1245872 1245877) (-768 "NODE1.spad" 1245027 1245043 1245548 1245553) (-767 "NNI.spad" 1243914 1243922 1245001 1245022) (-766 "NLINSOL.spad" 1242536 1242546 1243904 1243909) (-765 "NIPROB.spad" 1241077 1241085 1242526 1242531) (-764 "NFINTBAS.spad" 1238537 1238554 1241067 1241072) (-763 "NETCLT.spad" 1238511 1238522 1238527 1238532) (-762 "NCODIV.spad" 1236709 1236725 1238501 1238506) (-761 "NCNTFRAC.spad" 1236351 1236365 1236699 1236704) (-760 "NCEP.spad" 1234511 1234525 1236341 1236346) (-759 "NASRING.spad" 1234107 1234115 1234501 1234506) (-758 "NASRING.spad" 1233701 1233711 1234097 1234102) (-757 "NARNG.spad" 1233045 1233053 1233691 1233696) (-756 "NARNG.spad" 1232387 1232397 1233035 1233040) (-755 "NAGSP.spad" 1231460 1231468 1232377 1232382) (-754 "NAGS.spad" 1220985 1220993 1231450 1231455) (-753 "NAGF07.spad" 1219378 1219386 1220975 1220980) (-752 "NAGF04.spad" 1213610 1213618 1219368 1219373) (-751 "NAGF02.spad" 1207419 1207427 1213600 1213605) (-750 "NAGF01.spad" 1203022 1203030 1207409 1207414) (-749 "NAGE04.spad" 1196482 1196490 1203012 1203017) (-748 "NAGE02.spad" 1186824 1186832 1196472 1196477) (-747 "NAGE01.spad" 1182708 1182716 1186814 1186819) (-746 "NAGD03.spad" 1180628 1180636 1182698 1182703) (-745 "NAGD02.spad" 1173159 1173167 1180618 1180623) (-744 "NAGD01.spad" 1167272 1167280 1173149 1173154) (-743 "NAGC06.spad" 1163059 1163067 1167262 1167267) (-742 "NAGC05.spad" 1161528 1161536 1163049 1163054) (-741 "NAGC02.spad" 1160783 1160791 1161518 1161523) (-740 "NAALG.spad" 1160318 1160328 1160751 1160778) (-739 "NAALG.spad" 1159873 1159885 1160308 1160313) (-738 "MULTSQFR.spad" 1156831 1156848 1159863 1159868) (-737 "MULTFACT.spad" 1156214 1156231 1156821 1156826) (-736 "MTSCAT.spad" 1154248 1154269 1156112 1156209) (-735 "MTHING.spad" 1153905 1153915 1154238 1154243) (-734 "MSYSCMD.spad" 1153339 1153347 1153895 1153900) (-733 "MSET.spad" 1151281 1151291 1153045 1153084) (-732 "MSETAGG.spad" 1151126 1151136 1151249 1151276) (-731 "MRING.spad" 1148097 1148109 1150834 1150901) (-730 "MRF2.spad" 1147665 1147679 1148087 1148092) (-729 "MRATFAC.spad" 1147211 1147228 1147655 1147660) (-728 "MPRFF.spad" 1145241 1145260 1147201 1147206) (-727 "MPOLY.spad" 1142676 1142691 1143035 1143162) (-726 "MPCPF.spad" 1141940 1141959 1142666 1142671) (-725 "MPC3.spad" 1141755 1141795 1141930 1141935) (-724 "MPC2.spad" 1141397 1141430 1141745 1141750) (-723 "MONOTOOL.spad" 1139732 1139749 1141387 1141392) (-722 "MONOID.spad" 1139051 1139059 1139722 1139727) (-721 "MONOID.spad" 1138368 1138378 1139041 1139046) (-720 "MONOGEN.spad" 1137114 1137127 1138228 1138363) (-719 "MONOGEN.spad" 1135882 1135897 1136998 1137003) (-718 "MONADWU.spad" 1133896 1133904 1135872 1135877) (-717 "MONADWU.spad" 1131908 1131918 1133886 1133891) (-716 "MONAD.spad" 1131052 1131060 1131898 1131903) (-715 "MONAD.spad" 1130194 1130204 1131042 1131047) (-714 "MOEBIUS.spad" 1128880 1128894 1130174 1130189) (-713 "MODULE.spad" 1128750 1128760 1128848 1128875) (-712 "MODULE.spad" 1128640 1128652 1128740 1128745) (-711 "MODRING.spad" 1127971 1128010 1128620 1128635) (-710 "MODOP.spad" 1126630 1126642 1127793 1127860) (-709 "MODMONOM.spad" 1126359 1126377 1126620 1126625) (-708 "MODMON.spad" 1123118 1123134 1123837 1123990) (-707 "MODFIELD.spad" 1122476 1122515 1123020 1123113) (-706 "MMLFORM.spad" 1121336 1121344 1122466 1122471) (-705 "MMAP.spad" 1121076 1121110 1121326 1121331) (-704 "MLO.spad" 1119503 1119513 1121032 1121071) (-703 "MLIFT.spad" 1118075 1118092 1119493 1119498) (-702 "MKUCFUNC.spad" 1117608 1117626 1118065 1118070) (-701 "MKRECORD.spad" 1117210 1117223 1117598 1117603) (-700 "MKFUNC.spad" 1116591 1116601 1117200 1117205) (-699 "MKFLCFN.spad" 1115547 1115557 1116581 1116586) (-698 "MKCHSET.spad" 1115412 1115422 1115537 1115542) (-697 "MKBCFUNC.spad" 1114897 1114915 1115402 1115407) (-696 "MINT.spad" 1114336 1114344 1114799 1114892) (-695 "MHROWRED.spad" 1112837 1112847 1114326 1114331) (-694 "MFLOAT.spad" 1111353 1111361 1112727 1112832) (-693 "MFINFACT.spad" 1110753 1110775 1111343 1111348) (-692 "MESH.spad" 1108485 1108493 1110743 1110748) (-691 "MDDFACT.spad" 1106678 1106688 1108475 1108480) (-690 "MDAGG.spad" 1105965 1105975 1106658 1106673) (-689 "MCMPLX.spad" 1101939 1101947 1102553 1102754) (-688 "MCDEN.spad" 1101147 1101159 1101929 1101934) (-687 "MCALCFN.spad" 1098249 1098275 1101137 1101142) (-686 "MAYBE.spad" 1097533 1097544 1098239 1098244) (-685 "MATSTOR.spad" 1094809 1094819 1097523 1097528) (-684 "MATRIX.spad" 1093513 1093523 1093997 1094024) (-683 "MATLIN.spad" 1090839 1090863 1093397 1093402) (-682 "MATCAT.spad" 1082424 1082446 1090807 1090834) (-681 "MATCAT.spad" 1073881 1073905 1082266 1082271) (-680 "MATCAT2.spad" 1073149 1073197 1073871 1073876) (-679 "MAPPKG3.spad" 1072048 1072062 1073139 1073144) (-678 "MAPPKG2.spad" 1071382 1071394 1072038 1072043) (-677 "MAPPKG1.spad" 1070200 1070210 1071372 1071377) (-676 "MAPPAST.spad" 1069513 1069521 1070190 1070195) (-675 "MAPHACK3.spad" 1069321 1069335 1069503 1069508) (-674 "MAPHACK2.spad" 1069086 1069098 1069311 1069316) (-673 "MAPHACK1.spad" 1068716 1068726 1069076 1069081) (-672 "MAGMA.spad" 1066506 1066523 1068706 1068711) (-671 "MACROAST.spad" 1066085 1066093 1066496 1066501) (-670 "M3D.spad" 1063781 1063791 1065463 1065468) (-669 "LZSTAGG.spad" 1061009 1061019 1063771 1063776) (-668 "LZSTAGG.spad" 1058235 1058247 1060999 1061004) (-667 "LWORD.spad" 1054940 1054957 1058225 1058230) (-666 "LSTAST.spad" 1054724 1054732 1054930 1054935) (-665 "LSQM.spad" 1052950 1052964 1053348 1053399) (-664 "LSPP.spad" 1052483 1052500 1052940 1052945) (-663 "LSMP.spad" 1051323 1051351 1052473 1052478) (-662 "LSMP1.spad" 1049127 1049141 1051313 1051318) (-661 "LSAGG.spad" 1048796 1048806 1049095 1049122) (-660 "LSAGG.spad" 1048485 1048497 1048786 1048791) (-659 "LPOLY.spad" 1047439 1047458 1048341 1048410) (-658 "LPEFRAC.spad" 1046696 1046706 1047429 1047434) (-657 "LO.spad" 1046097 1046111 1046630 1046657) (-656 "LOGIC.spad" 1045699 1045707 1046087 1046092) (-655 "LOGIC.spad" 1045299 1045309 1045689 1045694) (-654 "LODOOPS.spad" 1044217 1044229 1045289 1045294) (-653 "LODO.spad" 1043601 1043617 1043897 1043936) (-652 "LODOF.spad" 1042645 1042662 1043558 1043563) (-651 "LODOCAT.spad" 1041303 1041313 1042601 1042640) (-650 "LODOCAT.spad" 1039959 1039971 1041259 1041264) (-649 "LODO2.spad" 1039232 1039244 1039639 1039678) (-648 "LODO1.spad" 1038632 1038642 1038912 1038951) (-647 "LODEEF.spad" 1037404 1037422 1038622 1038627) (-646 "LNAGG.spad" 1033206 1033216 1037394 1037399) (-645 "LNAGG.spad" 1028972 1028984 1033162 1033167) (-644 "LMOPS.spad" 1025708 1025725 1028962 1028967) (-643 "LMODULE.spad" 1025350 1025360 1025698 1025703) (-642 "LMDICT.spad" 1024633 1024643 1024901 1024928) (-641 "LITERAL.spad" 1024539 1024550 1024623 1024628) (-640 "LIST.spad" 1022257 1022267 1023686 1023713) (-639 "LIST3.spad" 1021548 1021562 1022247 1022252) (-638 "LIST2.spad" 1020188 1020200 1021538 1021543) (-637 "LIST2MAP.spad" 1017065 1017077 1020178 1020183) (-636 "LINEXP.spad" 1016497 1016507 1017045 1017060) (-635 "LINDEP.spad" 1015274 1015286 1016409 1016414) (-634 "LIMITRF.spad" 1013188 1013198 1015264 1015269) (-633 "LIMITPS.spad" 1012071 1012084 1013178 1013183) (-632 "LIE.spad" 1010085 1010097 1011361 1011506) (-631 "LIECAT.spad" 1009561 1009571 1010011 1010080) (-630 "LIECAT.spad" 1009065 1009077 1009517 1009522) (-629 "LIB.spad" 1007113 1007121 1007724 1007739) (-628 "LGROBP.spad" 1004466 1004485 1007103 1007108) (-627 "LF.spad" 1003385 1003401 1004456 1004461) (-626 "LFCAT.spad" 1002404 1002412 1003375 1003380) (-625 "LEXTRIPK.spad" 997907 997922 1002394 1002399) (-624 "LEXP.spad" 995910 995937 997887 997902) (-623 "LETAST.spad" 995609 995617 995900 995905) (-622 "LEADCDET.spad" 993993 994010 995599 995604) (-621 "LAZM3PK.spad" 992697 992719 993983 993988) (-620 "LAUPOL.spad" 991386 991399 992290 992359) (-619 "LAPLACE.spad" 990959 990975 991376 991381) (-618 "LA.spad" 990399 990413 990881 990920) (-617 "LALG.spad" 990175 990185 990379 990394) (-616 "LALG.spad" 989959 989971 990165 990170) (-615 "KVTFROM.spad" 989694 989704 989949 989954) (-614 "KTVLOGIC.spad" 989117 989125 989684 989689) (-613 "KRCFROM.spad" 988855 988865 989107 989112) (-612 "KOVACIC.spad" 987568 987585 988845 988850) (-611 "KONVERT.spad" 987290 987300 987558 987563) (-610 "KOERCE.spad" 987027 987037 987280 987285) (-609 "KERNEL.spad" 985562 985572 986811 986816) (-608 "KERNEL2.spad" 985265 985277 985552 985557) (-607 "KDAGG.spad" 984368 984390 985245 985260) (-606 "KDAGG.spad" 983479 983503 984358 984363) (-605 "KAFILE.spad" 982442 982458 982677 982704) (-604 "JORDAN.spad" 980269 980281 981732 981877) (-603 "JOINAST.spad" 979963 979971 980259 980264) (-602 "JAVACODE.spad" 979829 979837 979953 979958) (-601 "IXAGG.spad" 977952 977976 979819 979824) (-600 "IXAGG.spad" 975930 975956 977799 977804) (-599 "IVECTOR.spad" 974701 974716 974856 974883) (-598 "ITUPLE.spad" 973846 973856 974691 974696) (-597 "ITRIGMNP.spad" 972657 972676 973836 973841) (-596 "ITFUN3.spad" 972151 972165 972647 972652) (-595 "ITFUN2.spad" 971881 971893 972141 972146) (-594 "ITAYLOR.spad" 969673 969688 971717 971842) (-593 "ISUPS.spad" 962084 962099 968647 968744) (-592 "ISUMP.spad" 961581 961597 962074 962079) (-591 "ISTRING.spad" 960584 960597 960750 960777) (-590 "ISAST.spad" 960303 960311 960574 960579) (-589 "IRURPK.spad" 959016 959035 960293 960298) (-588 "IRSN.spad" 956976 956984 959006 959011) (-587 "IRRF2F.spad" 955451 955461 956932 956937) (-586 "IRREDFFX.spad" 955052 955063 955441 955446) (-585 "IROOT.spad" 953383 953393 955042 955047) (-584 "IR.spad" 951172 951186 953238 953265) (-583 "IR2.spad" 950192 950208 951162 951167) (-582 "IR2F.spad" 949392 949408 950182 950187) (-581 "IPRNTPK.spad" 949152 949160 949382 949387) (-580 "IPF.spad" 948717 948729 948957 949050) (-579 "IPADIC.spad" 948478 948504 948643 948712) (-578 "IP4ADDR.spad" 948035 948043 948468 948473) (-577 "IOMODE.spad" 947656 947664 948025 948030) (-576 "IOBFILE.spad" 947017 947025 947646 947651) (-575 "IOBCON.spad" 946882 946890 947007 947012) (-574 "INVLAPLA.spad" 946527 946543 946872 946877) (-573 "INTTR.spad" 939773 939790 946517 946522) (-572 "INTTOOLS.spad" 937484 937500 939347 939352) (-571 "INTSLPE.spad" 936790 936798 937474 937479) (-570 "INTRVL.spad" 936356 936366 936704 936785) (-569 "INTRF.spad" 934720 934734 936346 936351) (-568 "INTRET.spad" 934152 934162 934710 934715) (-567 "INTRAT.spad" 932827 932844 934142 934147) (-566 "INTPM.spad" 931190 931206 932470 932475) (-565 "INTPAF.spad" 928958 928976 931122 931127) (-564 "INTPACK.spad" 919268 919276 928948 928953) (-563 "INT.spad" 918629 918637 919122 919263) (-562 "INTHERTR.spad" 917895 917912 918619 918624) (-561 "INTHERAL.spad" 917561 917585 917885 917890) (-560 "INTHEORY.spad" 913974 913982 917551 917556) (-559 "INTG0.spad" 907437 907455 913906 913911) (-558 "INTFTBL.spad" 901466 901474 907427 907432) (-557 "INTFACT.spad" 900525 900535 901456 901461) (-556 "INTEF.spad" 898840 898856 900515 900520) (-555 "INTDOM.spad" 897455 897463 898766 898835) (-554 "INTDOM.spad" 896132 896142 897445 897450) (-553 "INTCAT.spad" 894385 894395 896046 896127) (-552 "INTBIT.spad" 893888 893896 894375 894380) (-551 "INTALG.spad" 893070 893097 893878 893883) (-550 "INTAF.spad" 892562 892578 893060 893065) (-549 "INTABL.spad" 891080 891111 891243 891270) (-548 "INT8.spad" 890960 890968 891070 891075) (-547 "INT32.spad" 890839 890847 890950 890955) (-546 "INT16.spad" 890718 890726 890829 890834) (-545 "INS.spad" 888185 888193 890620 890713) (-544 "INS.spad" 885738 885748 888175 888180) (-543 "INPSIGN.spad" 885172 885185 885728 885733) (-542 "INPRODPF.spad" 884238 884257 885162 885167) (-541 "INPRODFF.spad" 883296 883320 884228 884233) (-540 "INNMFACT.spad" 882267 882284 883286 883291) (-539 "INMODGCD.spad" 881751 881781 882257 882262) (-538 "INFSP.spad" 880036 880058 881741 881746) (-537 "INFPROD0.spad" 879086 879105 880026 880031) (-536 "INFORM.spad" 876247 876255 879076 879081) (-535 "INFORM1.spad" 875872 875882 876237 876242) (-534 "INFINITY.spad" 875424 875432 875862 875867) (-533 "INETCLTS.spad" 875401 875409 875414 875419) (-532 "INEP.spad" 873933 873955 875391 875396) (-531 "INDE.spad" 873662 873679 873923 873928) (-530 "INCRMAPS.spad" 873083 873093 873652 873657) (-529 "INBFILE.spad" 872155 872163 873073 873078) (-528 "INBFF.spad" 867925 867936 872145 872150) (-527 "INBCON.spad" 866213 866221 867915 867920) (-526 "INBCON.spad" 864499 864509 866203 866208) (-525 "INAST.spad" 864164 864172 864489 864494) (-524 "IMPTAST.spad" 863872 863880 864154 864159) (-523 "IMATRIX.spad" 862817 862843 863329 863356) (-522 "IMATQF.spad" 861911 861955 862773 862778) (-521 "IMATLIN.spad" 860516 860540 861867 861872) (-520 "ILIST.spad" 859172 859187 859699 859726) (-519 "IIARRAY2.spad" 858560 858598 858779 858806) (-518 "IFF.spad" 857970 857986 858241 858334) (-517 "IFAST.spad" 857584 857592 857960 857965) (-516 "IFARRAY.spad" 855071 855086 856767 856794) (-515 "IFAMON.spad" 854933 854950 855027 855032) (-514 "IEVALAB.spad" 854322 854334 854923 854928) (-513 "IEVALAB.spad" 853709 853723 854312 854317) (-512 "IDPO.spad" 853507 853519 853699 853704) (-511 "IDPOAMS.spad" 853263 853275 853497 853502) (-510 "IDPOAM.spad" 852983 852995 853253 853258) (-509 "IDPC.spad" 851917 851929 852973 852978) (-508 "IDPAM.spad" 851662 851674 851907 851912) (-507 "IDPAG.spad" 851409 851421 851652 851657) (-506 "IDENT.spad" 851181 851189 851399 851404) (-505 "IDECOMP.spad" 848418 848436 851171 851176) (-504 "IDEAL.spad" 843341 843380 848353 848358) (-503 "ICDEN.spad" 842492 842508 843331 843336) (-502 "ICARD.spad" 841681 841689 842482 842487) (-501 "IBPTOOLS.spad" 840274 840291 841671 841676) (-500 "IBITS.spad" 839473 839486 839910 839937) (-499 "IBATOOL.spad" 836348 836367 839463 839468) (-498 "IBACHIN.spad" 834835 834850 836338 836343) (-497 "IARRAY2.spad" 833823 833849 834442 834469) (-496 "IARRAY1.spad" 832868 832883 833006 833033) (-495 "IAN.spad" 831081 831089 832684 832777) (-494 "IALGFACT.spad" 830682 830715 831071 831076) (-493 "HYPCAT.spad" 830106 830114 830672 830677) (-492 "HYPCAT.spad" 829528 829538 830096 830101) (-491 "HOSTNAME.spad" 829336 829344 829518 829523) (-490 "HOMOTOP.spad" 829079 829089 829326 829331) (-489 "HOAGG.spad" 826347 826357 829069 829074) (-488 "HOAGG.spad" 823390 823402 826114 826119) (-487 "HEXADEC.spad" 821492 821500 821857 821950) (-486 "HEUGCD.spad" 820507 820518 821482 821487) (-485 "HELLFDIV.spad" 820097 820121 820497 820502) (-484 "HEAP.spad" 819489 819499 819704 819731) (-483 "HEADAST.spad" 819020 819028 819479 819484) (-482 "HDP.spad" 808863 808879 809240 809371) (-481 "HDMP.spad" 806039 806054 806657 806784) (-480 "HB.spad" 804276 804284 806029 806034) (-479 "HASHTBL.spad" 802746 802777 802957 802984) (-478 "HASAST.spad" 802462 802470 802736 802741) (-477 "HACKPI.spad" 801945 801953 802364 802457) (-476 "GTSET.spad" 800884 800900 801591 801618) (-475 "GSTBL.spad" 799403 799438 799577 799592) (-474 "GSERIES.spad" 796570 796597 797535 797684) (-473 "GROUP.spad" 795839 795847 796550 796565) (-472 "GROUP.spad" 795116 795126 795829 795834) (-471 "GROEBSOL.spad" 793604 793625 795106 795111) (-470 "GRMOD.spad" 792175 792187 793594 793599) (-469 "GRMOD.spad" 790744 790758 792165 792170) (-468 "GRIMAGE.spad" 783349 783357 790734 790739) (-467 "GRDEF.spad" 781728 781736 783339 783344) (-466 "GRAY.spad" 780187 780195 781718 781723) (-465 "GRALG.spad" 779234 779246 780177 780182) (-464 "GRALG.spad" 778279 778293 779224 779229) (-463 "GPOLSET.spad" 777733 777756 777961 777988) (-462 "GOSPER.spad" 776998 777016 777723 777728) (-461 "GMODPOL.spad" 776136 776163 776966 776993) (-460 "GHENSEL.spad" 775205 775219 776126 776131) (-459 "GENUPS.spad" 771306 771319 775195 775200) (-458 "GENUFACT.spad" 770883 770893 771296 771301) (-457 "GENPGCD.spad" 770467 770484 770873 770878) (-456 "GENMFACT.spad" 769919 769938 770457 770462) (-455 "GENEEZ.spad" 767858 767871 769909 769914) (-454 "GDMP.spad" 764876 764893 765652 765779) (-453 "GCNAALG.spad" 758771 758798 764670 764737) (-452 "GCDDOM.spad" 757943 757951 758697 758766) (-451 "GCDDOM.spad" 757177 757187 757933 757938) (-450 "GB.spad" 754695 754733 757133 757138) (-449 "GBINTERN.spad" 750715 750753 754685 754690) (-448 "GBF.spad" 746472 746510 750705 750710) (-447 "GBEUCLID.spad" 744346 744384 746462 746467) (-446 "GAUSSFAC.spad" 743643 743651 744336 744341) (-445 "GALUTIL.spad" 741965 741975 743599 743604) (-444 "GALPOLYU.spad" 740411 740424 741955 741960) (-443 "GALFACTU.spad" 738576 738595 740401 740406) (-442 "GALFACT.spad" 728709 728720 738566 738571) (-441 "FVFUN.spad" 725732 725740 728699 728704) (-440 "FVC.spad" 724784 724792 725722 725727) (-439 "FUNDESC.spad" 724462 724470 724774 724779) (-438 "FUNCTION.spad" 724311 724323 724452 724457) (-437 "FT.spad" 722604 722612 724301 724306) (-436 "FTEM.spad" 721767 721775 722594 722599) (-435 "FSUPFACT.spad" 720667 720686 721703 721708) (-434 "FST.spad" 718753 718761 720657 720662) (-433 "FSRED.spad" 718231 718247 718743 718748) (-432 "FSPRMELT.spad" 717055 717071 718188 718193) (-431 "FSPECF.spad" 715132 715148 717045 717050) (-430 "FS.spad" 709194 709204 714907 715127) (-429 "FS.spad" 703034 703046 708749 708754) (-428 "FSINT.spad" 702692 702708 703024 703029) (-427 "FSERIES.spad" 701879 701891 702512 702611) (-426 "FSCINT.spad" 701192 701208 701869 701874) (-425 "FSAGG.spad" 700309 700319 701148 701187) (-424 "FSAGG.spad" 699388 699400 700229 700234) (-423 "FSAGG2.spad" 698087 698103 699378 699383) (-422 "FS2UPS.spad" 692570 692604 698077 698082) (-421 "FS2.spad" 692215 692231 692560 692565) (-420 "FS2EXPXP.spad" 691338 691361 692205 692210) (-419 "FRUTIL.spad" 690280 690290 691328 691333) (-418 "FR.spad" 683974 683984 689304 689373) (-417 "FRNAALG.spad" 679061 679071 683916 683969) (-416 "FRNAALG.spad" 674160 674172 679017 679022) (-415 "FRNAAF2.spad" 673614 673632 674150 674155) (-414 "FRMOD.spad" 673008 673038 673545 673550) (-413 "FRIDEAL.spad" 672203 672224 672988 673003) (-412 "FRIDEAL2.spad" 671805 671837 672193 672198) (-411 "FRETRCT.spad" 671316 671326 671795 671800) (-410 "FRETRCT.spad" 670693 670705 671174 671179) (-409 "FRAMALG.spad" 669021 669034 670649 670688) (-408 "FRAMALG.spad" 667381 667396 669011 669016) (-407 "FRAC.spad" 664480 664490 664883 665056) (-406 "FRAC2.spad" 664083 664095 664470 664475) (-405 "FR2.spad" 663417 663429 664073 664078) (-404 "FPS.spad" 660226 660234 663307 663412) (-403 "FPS.spad" 657063 657073 660146 660151) (-402 "FPC.spad" 656105 656113 656965 657058) (-401 "FPC.spad" 655233 655243 656095 656100) (-400 "FPATMAB.spad" 654995 655005 655223 655228) (-399 "FPARFRAC.spad" 653468 653485 654985 654990) (-398 "FORTRAN.spad" 651974 652017 653458 653463) (-397 "FORT.spad" 650903 650911 651964 651969) (-396 "FORTFN.spad" 648073 648081 650893 650898) (-395 "FORTCAT.spad" 647757 647765 648063 648068) (-394 "FORMULA.spad" 645221 645229 647747 647752) (-393 "FORMULA1.spad" 644700 644710 645211 645216) (-392 "FORDER.spad" 644391 644415 644690 644695) (-391 "FOP.spad" 643592 643600 644381 644386) (-390 "FNLA.spad" 643016 643038 643560 643587) (-389 "FNCAT.spad" 641603 641611 643006 643011) (-388 "FNAME.spad" 641495 641503 641593 641598) (-387 "FMTC.spad" 641293 641301 641421 641490) (-386 "FMONOID.spad" 638348 638358 641249 641254) (-385 "FM.spad" 638043 638055 638282 638309) (-384 "FMFUN.spad" 635073 635081 638033 638038) (-383 "FMC.spad" 634125 634133 635063 635068) (-382 "FMCAT.spad" 631779 631797 634093 634120) (-381 "FM1.spad" 631136 631148 631713 631740) (-380 "FLOATRP.spad" 628857 628871 631126 631131) (-379 "FLOAT.spad" 622145 622153 628723 628852) (-378 "FLOATCP.spad" 619562 619576 622135 622140) (-377 "FLINEXP.spad" 619274 619284 619542 619557) (-376 "FLINEXP.spad" 618940 618952 619210 619215) (-375 "FLASORT.spad" 618260 618272 618930 618935) (-374 "FLALG.spad" 615906 615925 618186 618255) (-373 "FLAGG.spad" 612924 612934 615886 615901) (-372 "FLAGG.spad" 609843 609855 612807 612812) (-371 "FLAGG2.spad" 608524 608540 609833 609838) (-370 "FINRALG.spad" 606553 606566 608480 608519) (-369 "FINRALG.spad" 604508 604523 606437 606442) (-368 "FINITE.spad" 603660 603668 604498 604503) (-367 "FINAALG.spad" 592641 592651 603602 603655) (-366 "FINAALG.spad" 581634 581646 592597 592602) (-365 "FILE.spad" 581217 581227 581624 581629) (-364 "FILECAT.spad" 579735 579752 581207 581212) (-363 "FIELD.spad" 579141 579149 579637 579730) (-362 "FIELD.spad" 578633 578643 579131 579136) (-361 "FGROUP.spad" 577242 577252 578613 578628) (-360 "FGLMICPK.spad" 576029 576044 577232 577237) (-359 "FFX.spad" 575404 575419 575745 575838) (-358 "FFSLPE.spad" 574893 574914 575394 575399) (-357 "FFPOLY.spad" 566145 566156 574883 574888) (-356 "FFPOLY2.spad" 565205 565222 566135 566140) (-355 "FFP.spad" 564602 564622 564921 565014) (-354 "FF.spad" 564050 564066 564283 564376) (-353 "FFNBX.spad" 562562 562582 563766 563859) (-352 "FFNBP.spad" 561075 561092 562278 562371) (-351 "FFNB.spad" 559540 559561 560756 560849) (-350 "FFINTBAS.spad" 556954 556973 559530 559535) (-349 "FFIELDC.spad" 554529 554537 556856 556949) (-348 "FFIELDC.spad" 552190 552200 554519 554524) (-347 "FFHOM.spad" 550938 550955 552180 552185) (-346 "FFF.spad" 548373 548384 550928 550933) (-345 "FFCGX.spad" 547220 547240 548089 548182) (-344 "FFCGP.spad" 546109 546129 546936 547029) (-343 "FFCG.spad" 544901 544922 545790 545883) (-342 "FFCAT.spad" 537928 537950 544740 544896) (-341 "FFCAT.spad" 531034 531058 537848 537853) (-340 "FFCAT2.spad" 530779 530819 531024 531029) (-339 "FEXPR.spad" 522488 522534 530535 530574) (-338 "FEVALAB.spad" 522194 522204 522478 522483) (-337 "FEVALAB.spad" 521685 521697 521971 521976) (-336 "FDIV.spad" 521127 521151 521675 521680) (-335 "FDIVCAT.spad" 519169 519193 521117 521122) (-334 "FDIVCAT.spad" 517209 517235 519159 519164) (-333 "FDIV2.spad" 516863 516903 517199 517204) (-332 "FCPAK1.spad" 515416 515424 516853 516858) (-331 "FCOMP.spad" 514795 514805 515406 515411) (-330 "FC.spad" 504710 504718 514785 514790) (-329 "FAXF.spad" 497645 497659 504612 504705) (-328 "FAXF.spad" 490632 490648 497601 497606) (-327 "FARRAY.spad" 488778 488788 489815 489842) (-326 "FAMR.spad" 486898 486910 488676 488773) (-325 "FAMR.spad" 485002 485016 486782 486787) (-324 "FAMONOID.spad" 484652 484662 484956 484961) (-323 "FAMONC.spad" 482874 482886 484642 484647) (-322 "FAGROUP.spad" 482480 482490 482770 482797) (-321 "FACUTIL.spad" 480676 480693 482470 482475) (-320 "FACTFUNC.spad" 479852 479862 480666 480671) (-319 "EXPUPXS.spad" 476685 476708 477984 478133) (-318 "EXPRTUBE.spad" 473913 473921 476675 476680) (-317 "EXPRODE.spad" 470785 470801 473903 473908) (-316 "EXPR.spad" 466060 466070 466774 467181) (-315 "EXPR2UPS.spad" 462152 462165 466050 466055) (-314 "EXPR2.spad" 461855 461867 462142 462147) (-313 "EXPEXPAN.spad" 458793 458818 459427 459520) (-312 "EXIT.spad" 458464 458472 458783 458788) (-311 "EXITAST.spad" 458200 458208 458454 458459) (-310 "EVALCYC.spad" 457658 457672 458190 458195) (-309 "EVALAB.spad" 457222 457232 457648 457653) (-308 "EVALAB.spad" 456784 456796 457212 457217) (-307 "EUCDOM.spad" 454326 454334 456710 456779) (-306 "EUCDOM.spad" 451930 451940 454316 454321) (-305 "ESTOOLS.spad" 443770 443778 451920 451925) (-304 "ESTOOLS2.spad" 443371 443385 443760 443765) (-303 "ESTOOLS1.spad" 443056 443067 443361 443366) (-302 "ES.spad" 435603 435611 443046 443051) (-301 "ES.spad" 428056 428066 435501 435506) (-300 "ESCONT.spad" 424829 424837 428046 428051) (-299 "ESCONT1.spad" 424578 424590 424819 424824) (-298 "ES2.spad" 424073 424089 424568 424573) (-297 "ES1.spad" 423639 423655 424063 424068) (-296 "ERROR.spad" 420960 420968 423629 423634) (-295 "EQTBL.spad" 419432 419454 419641 419668) (-294 "EQ.spad" 414306 414316 417105 417217) (-293 "EQ2.spad" 414022 414034 414296 414301) (-292 "EP.spad" 410336 410346 414012 414017) (-291 "ENV.spad" 409038 409046 410326 410331) (-290 "ENTIRER.spad" 408706 408714 408982 409033) (-289 "EMR.spad" 407907 407948 408632 408701) (-288 "ELTAGG.spad" 406147 406166 407897 407902) (-287 "ELTAGG.spad" 404351 404372 406103 406108) (-286 "ELTAB.spad" 403798 403816 404341 404346) (-285 "ELFUTS.spad" 403177 403196 403788 403793) (-284 "ELEMFUN.spad" 402866 402874 403167 403172) (-283 "ELEMFUN.spad" 402553 402563 402856 402861) (-282 "ELAGG.spad" 400496 400506 402533 402548) (-281 "ELAGG.spad" 398376 398388 400415 400420) (-280 "ELABEXPR.spad" 397307 397315 398366 398371) (-279 "EFUPXS.spad" 394083 394113 397263 397268) (-278 "EFULS.spad" 390919 390942 394039 394044) (-277 "EFSTRUC.spad" 388874 388890 390909 390914) (-276 "EF.spad" 383640 383656 388864 388869) (-275 "EAB.spad" 381916 381924 383630 383635) (-274 "E04UCFA.spad" 381452 381460 381906 381911) (-273 "E04NAFA.spad" 381029 381037 381442 381447) (-272 "E04MBFA.spad" 380609 380617 381019 381024) (-271 "E04JAFA.spad" 380145 380153 380599 380604) (-270 "E04GCFA.spad" 379681 379689 380135 380140) (-269 "E04FDFA.spad" 379217 379225 379671 379676) (-268 "E04DGFA.spad" 378753 378761 379207 379212) (-267 "E04AGNT.spad" 374595 374603 378743 378748) (-266 "DVARCAT.spad" 371280 371290 374585 374590) (-265 "DVARCAT.spad" 367963 367975 371270 371275) (-264 "DSMP.spad" 365394 365408 365699 365826) (-263 "DROPT.spad" 359339 359347 365384 365389) (-262 "DROPT1.spad" 359002 359012 359329 359334) (-261 "DROPT0.spad" 353829 353837 358992 358997) (-260 "DRAWPT.spad" 351984 351992 353819 353824) (-259 "DRAW.spad" 344584 344597 351974 351979) (-258 "DRAWHACK.spad" 343892 343902 344574 344579) (-257 "DRAWCX.spad" 341334 341342 343882 343887) (-256 "DRAWCURV.spad" 340871 340886 341324 341329) (-255 "DRAWCFUN.spad" 330043 330051 340861 340866) (-254 "DQAGG.spad" 328211 328221 330011 330038) (-253 "DPOLCAT.spad" 323552 323568 328079 328206) (-252 "DPOLCAT.spad" 318979 318997 323508 323513) (-251 "DPMO.spad" 311205 311221 311343 311644) (-250 "DPMM.spad" 303444 303462 303569 303870) (-249 "DOMCTOR.spad" 303336 303344 303434 303439) (-248 "DOMAIN.spad" 302467 302475 303326 303331) (-247 "DMP.spad" 299689 299704 300261 300388) (-246 "DLP.spad" 299037 299047 299679 299684) (-245 "DLIST.spad" 297616 297626 298220 298247) (-244 "DLAGG.spad" 296027 296037 297606 297611) (-243 "DIVRING.spad" 295569 295577 295971 296022) (-242 "DIVRING.spad" 295155 295165 295559 295564) (-241 "DISPLAY.spad" 293335 293343 295145 295150) (-240 "DIRPROD.spad" 282915 282931 283555 283686) (-239 "DIRPROD2.spad" 281723 281741 282905 282910) (-238 "DIRPCAT.spad" 280665 280681 281587 281718) (-237 "DIRPCAT.spad" 279336 279354 280260 280265) (-236 "DIOSP.spad" 278161 278169 279326 279331) (-235 "DIOPS.spad" 277145 277155 278141 278156) (-234 "DIOPS.spad" 276103 276115 277101 277106) (-233 "DIFRING.spad" 275395 275403 276083 276098) (-232 "DIFRING.spad" 274695 274705 275385 275390) (-231 "DIFEXT.spad" 273854 273864 274675 274690) (-230 "DIFEXT.spad" 272930 272942 273753 273758) (-229 "DIAGG.spad" 272560 272570 272910 272925) (-228 "DIAGG.spad" 272198 272210 272550 272555) (-227 "DHMATRIX.spad" 270502 270512 271655 271682) (-226 "DFSFUN.spad" 263910 263918 270492 270497) (-225 "DFLOAT.spad" 260631 260639 263800 263905) (-224 "DFINTTLS.spad" 258840 258856 260621 260626) (-223 "DERHAM.spad" 256750 256782 258820 258835) (-222 "DEQUEUE.spad" 256068 256078 256357 256384) (-221 "DEGRED.spad" 255683 255697 256058 256063) (-220 "DEFINTRF.spad" 253208 253218 255673 255678) (-219 "DEFINTEF.spad" 251704 251720 253198 253203) (-218 "DEFAST.spad" 251072 251080 251694 251699) (-217 "DECIMAL.spad" 249178 249186 249539 249632) (-216 "DDFACT.spad" 246977 246994 249168 249173) (-215 "DBLRESP.spad" 246575 246599 246967 246972) (-214 "DBASE.spad" 245229 245239 246565 246570) (-213 "DATAARY.spad" 244691 244704 245219 245224) (-212 "D03FAFA.spad" 244519 244527 244681 244686) (-211 "D03EEFA.spad" 244339 244347 244509 244514) (-210 "D03AGNT.spad" 243419 243427 244329 244334) (-209 "D02EJFA.spad" 242881 242889 243409 243414) (-208 "D02CJFA.spad" 242359 242367 242871 242876) (-207 "D02BHFA.spad" 241849 241857 242349 242354) (-206 "D02BBFA.spad" 241339 241347 241839 241844) (-205 "D02AGNT.spad" 236143 236151 241329 241334) (-204 "D01WGTS.spad" 234462 234470 236133 236138) (-203 "D01TRNS.spad" 234439 234447 234452 234457) (-202 "D01GBFA.spad" 233961 233969 234429 234434) (-201 "D01FCFA.spad" 233483 233491 233951 233956) (-200 "D01ASFA.spad" 232951 232959 233473 233478) (-199 "D01AQFA.spad" 232397 232405 232941 232946) (-198 "D01APFA.spad" 231821 231829 232387 232392) (-197 "D01ANFA.spad" 231315 231323 231811 231816) (-196 "D01AMFA.spad" 230825 230833 231305 231310) (-195 "D01ALFA.spad" 230365 230373 230815 230820) (-194 "D01AKFA.spad" 229891 229899 230355 230360) (-193 "D01AJFA.spad" 229414 229422 229881 229886) (-192 "D01AGNT.spad" 225473 225481 229404 229409) (-191 "CYCLOTOM.spad" 224979 224987 225463 225468) (-190 "CYCLES.spad" 221811 221819 224969 224974) (-189 "CVMP.spad" 221228 221238 221801 221806) (-188 "CTRIGMNP.spad" 219718 219734 221218 221223) (-187 "CTOR.spad" 219413 219421 219708 219713) (-186 "CTORKIND.spad" 219016 219024 219403 219408) (-185 "CTORCAT.spad" 218265 218273 219006 219011) (-184 "CTORCAT.spad" 217512 217522 218255 218260) (-183 "CTORCALL.spad" 217092 217100 217502 217507) (-182 "CSTTOOLS.spad" 216335 216348 217082 217087) (-181 "CRFP.spad" 210039 210052 216325 216330) (-180 "CRCEAST.spad" 209759 209767 210029 210034) (-179 "CRAPACK.spad" 208802 208812 209749 209754) (-178 "CPMATCH.spad" 208302 208317 208727 208732) (-177 "CPIMA.spad" 208007 208026 208292 208297) (-176 "COORDSYS.spad" 202900 202910 207997 208002) (-175 "CONTOUR.spad" 202302 202310 202890 202895) (-174 "CONTFRAC.spad" 197914 197924 202204 202297) (-173 "CONDUIT.spad" 197672 197680 197904 197909) (-172 "COMRING.spad" 197346 197354 197610 197667) (-171 "COMPPROP.spad" 196860 196868 197336 197341) (-170 "COMPLPAT.spad" 196627 196642 196850 196855) (-169 "COMPLEX.spad" 190651 190661 190895 191156) (-168 "COMPLEX2.spad" 190364 190376 190641 190646) (-167 "COMPFACT.spad" 189966 189980 190354 190359) (-166 "COMPCAT.spad" 188034 188044 189700 189961) (-165 "COMPCAT.spad" 185795 185807 187463 187468) (-164 "COMMUPC.spad" 185541 185559 185785 185790) (-163 "COMMONOP.spad" 185074 185082 185531 185536) (-162 "COMM.spad" 184883 184891 185064 185069) (-161 "COMMAAST.spad" 184646 184654 184873 184878) (-160 "COMBOPC.spad" 183551 183559 184636 184641) (-159 "COMBINAT.spad" 182296 182306 183541 183546) (-158 "COMBF.spad" 179664 179680 182286 182291) (-157 "COLOR.spad" 178501 178509 179654 179659) (-156 "COLONAST.spad" 178167 178175 178491 178496) (-155 "CMPLXRT.spad" 177876 177893 178157 178162) (-154 "CLLCTAST.spad" 177538 177546 177866 177871) (-153 "CLIP.spad" 173630 173638 177528 177533) (-152 "CLIF.spad" 172269 172285 173586 173625) (-151 "CLAGG.spad" 168754 168764 172259 172264) (-150 "CLAGG.spad" 165110 165122 168617 168622) (-149 "CINTSLPE.spad" 164435 164448 165100 165105) (-148 "CHVAR.spad" 162513 162535 164425 164430) (-147 "CHARZ.spad" 162428 162436 162493 162508) (-146 "CHARPOL.spad" 161936 161946 162418 162423) (-145 "CHARNZ.spad" 161689 161697 161916 161931) (-144 "CHAR.spad" 159557 159565 161679 161684) (-143 "CFCAT.spad" 158873 158881 159547 159552) (-142 "CDEN.spad" 158031 158045 158863 158868) (-141 "CCLASS.spad" 156180 156188 157442 157481) (-140 "CATEGORY.spad" 155270 155278 156170 156175) (-139 "CATCTOR.spad" 155161 155169 155260 155265) (-138 "CATAST.spad" 154788 154796 155151 155156) (-137 "CASEAST.spad" 154502 154510 154778 154783) (-136 "CARTEN.spad" 149605 149629 154492 154497) (-135 "CARTEN2.spad" 148991 149018 149595 149600) (-134 "CARD.spad" 146280 146288 148965 148986) (-133 "CAPSLAST.spad" 146054 146062 146270 146275) (-132 "CACHSET.spad" 145676 145684 146044 146049) (-131 "CABMON.spad" 145229 145237 145666 145671) (-130 "BYTEORD.spad" 144904 144912 145219 145224) (-129 "BYTE.spad" 144325 144333 144894 144899) (-128 "BYTEBUF.spad" 142157 142165 143494 143521) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2282815 2282820 2282825 2282830) (-2 NIL 2282795 2282800 2282805 2282810) (-1 NIL 2282775 2282780 2282785 2282790) (0 NIL 2282755 2282760 2282765 2282770) (-1285 "ZMOD.spad" 2282564 2282577 2282693 2282750) (-1284 "ZLINDEP.spad" 2281608 2281619 2282554 2282559) (-1283 "ZDSOLVE.spad" 2271457 2271479 2281598 2281603) (-1282 "YSTREAM.spad" 2270950 2270961 2271447 2271452) (-1281 "XRPOLY.spad" 2270170 2270190 2270806 2270875) (-1280 "XPR.spad" 2267961 2267974 2269888 2269987) (-1279 "XPOLY.spad" 2267516 2267527 2267817 2267886) (-1278 "XPOLYC.spad" 2266833 2266849 2267442 2267511) (-1277 "XPBWPOLY.spad" 2265270 2265290 2266613 2266682) (-1276 "XF.spad" 2263731 2263746 2265172 2265265) (-1275 "XF.spad" 2262172 2262189 2263615 2263620) (-1274 "XFALG.spad" 2259196 2259212 2262098 2262167) (-1273 "XEXPPKG.spad" 2258447 2258473 2259186 2259191) (-1272 "XDPOLY.spad" 2258061 2258077 2258303 2258372) (-1271 "XALG.spad" 2257721 2257732 2258017 2258056) (-1270 "WUTSET.spad" 2253560 2253577 2257367 2257394) (-1269 "WP.spad" 2252759 2252803 2253418 2253485) (-1268 "WHILEAST.spad" 2252557 2252566 2252749 2252754) (-1267 "WHEREAST.spad" 2252228 2252237 2252547 2252552) (-1266 "WFFINTBS.spad" 2249791 2249813 2252218 2252223) (-1265 "WEIER.spad" 2248005 2248016 2249781 2249786) (-1264 "VSPACE.spad" 2247678 2247689 2247973 2248000) (-1263 "VSPACE.spad" 2247371 2247384 2247668 2247673) (-1262 "VOID.spad" 2247048 2247057 2247361 2247366) (-1261 "VIEW.spad" 2244670 2244679 2247038 2247043) (-1260 "VIEWDEF.spad" 2239867 2239876 2244660 2244665) (-1259 "VIEW3D.spad" 2223702 2223711 2239857 2239862) (-1258 "VIEW2D.spad" 2211439 2211448 2223692 2223697) (-1257 "VECTOR.spad" 2210114 2210125 2210365 2210392) (-1256 "VECTOR2.spad" 2208741 2208754 2210104 2210109) (-1255 "VECTCAT.spad" 2206641 2206652 2208709 2208736) (-1254 "VECTCAT.spad" 2204349 2204362 2206419 2206424) (-1253 "VARIABLE.spad" 2204129 2204144 2204339 2204344) (-1252 "UTYPE.spad" 2203773 2203782 2204119 2204124) (-1251 "UTSODETL.spad" 2203066 2203090 2203729 2203734) (-1250 "UTSODE.spad" 2201254 2201274 2203056 2203061) (-1249 "UTS.spad" 2196043 2196071 2199721 2199818) (-1248 "UTSCAT.spad" 2193494 2193510 2195941 2196038) (-1247 "UTSCAT.spad" 2190589 2190607 2193038 2193043) (-1246 "UTS2.spad" 2190182 2190217 2190579 2190584) (-1245 "URAGG.spad" 2184814 2184825 2190172 2190177) (-1244 "URAGG.spad" 2179410 2179423 2184770 2184775) (-1243 "UPXSSING.spad" 2177053 2177079 2178491 2178624) (-1242 "UPXS.spad" 2174201 2174229 2175185 2175334) (-1241 "UPXSCONS.spad" 2171958 2171978 2172333 2172482) (-1240 "UPXSCCA.spad" 2170523 2170543 2171804 2171953) (-1239 "UPXSCCA.spad" 2169230 2169252 2170513 2170518) (-1238 "UPXSCAT.spad" 2167811 2167827 2169076 2169225) (-1237 "UPXS2.spad" 2167352 2167405 2167801 2167806) (-1236 "UPSQFREE.spad" 2165764 2165778 2167342 2167347) (-1235 "UPSCAT.spad" 2163357 2163381 2165662 2165759) (-1234 "UPSCAT.spad" 2160656 2160682 2162963 2162968) (-1233 "UPOLYC.spad" 2155634 2155645 2160498 2160651) (-1232 "UPOLYC.spad" 2150504 2150517 2155370 2155375) (-1231 "UPOLYC2.spad" 2149973 2149992 2150494 2150499) (-1230 "UP.spad" 2147130 2147145 2147523 2147676) (-1229 "UPMP.spad" 2146020 2146033 2147120 2147125) (-1228 "UPDIVP.spad" 2145583 2145597 2146010 2146015) (-1227 "UPDECOMP.spad" 2143820 2143834 2145573 2145578) (-1226 "UPCDEN.spad" 2143027 2143043 2143810 2143815) (-1225 "UP2.spad" 2142389 2142410 2143017 2143022) (-1224 "UNISEG.spad" 2141742 2141753 2142308 2142313) (-1223 "UNISEG2.spad" 2141235 2141248 2141698 2141703) (-1222 "UNIFACT.spad" 2140336 2140348 2141225 2141230) (-1221 "ULS.spad" 2130888 2130916 2131981 2132410) (-1220 "ULSCONS.spad" 2123282 2123302 2123654 2123803) (-1219 "ULSCCAT.spad" 2121011 2121031 2123128 2123277) (-1218 "ULSCCAT.spad" 2118848 2118870 2120967 2120972) (-1217 "ULSCAT.spad" 2117064 2117080 2118694 2118843) (-1216 "ULS2.spad" 2116576 2116629 2117054 2117059) (-1215 "UINT8.spad" 2116453 2116462 2116566 2116571) (-1214 "UINT32.spad" 2116329 2116338 2116443 2116448) (-1213 "UINT16.spad" 2116205 2116214 2116319 2116324) (-1212 "UFD.spad" 2115270 2115279 2116131 2116200) (-1211 "UFD.spad" 2114397 2114408 2115260 2115265) (-1210 "UDVO.spad" 2113244 2113253 2114387 2114392) (-1209 "UDPO.spad" 2110671 2110682 2113200 2113205) (-1208 "TYPE.spad" 2110603 2110612 2110661 2110666) (-1207 "TYPEAST.spad" 2110522 2110531 2110593 2110598) (-1206 "TWOFACT.spad" 2109172 2109187 2110512 2110517) (-1205 "TUPLE.spad" 2108656 2108667 2109071 2109076) (-1204 "TUBETOOL.spad" 2105493 2105502 2108646 2108651) (-1203 "TUBE.spad" 2104134 2104151 2105483 2105488) (-1202 "TS.spad" 2102723 2102739 2103699 2103796) (-1201 "TSETCAT.spad" 2089850 2089867 2102691 2102718) (-1200 "TSETCAT.spad" 2076963 2076982 2089806 2089811) (-1199 "TRMANIP.spad" 2071329 2071346 2076669 2076674) (-1198 "TRIMAT.spad" 2070288 2070313 2071319 2071324) (-1197 "TRIGMNIP.spad" 2068805 2068822 2070278 2070283) (-1196 "TRIGCAT.spad" 2068317 2068326 2068795 2068800) (-1195 "TRIGCAT.spad" 2067827 2067838 2068307 2068312) (-1194 "TREE.spad" 2066398 2066409 2067434 2067461) (-1193 "TRANFUN.spad" 2066229 2066238 2066388 2066393) (-1192 "TRANFUN.spad" 2066058 2066069 2066219 2066224) (-1191 "TOPSP.spad" 2065732 2065741 2066048 2066053) (-1190 "TOOLSIGN.spad" 2065395 2065406 2065722 2065727) (-1189 "TEXTFILE.spad" 2063952 2063961 2065385 2065390) (-1188 "TEX.spad" 2061084 2061093 2063942 2063947) (-1187 "TEX1.spad" 2060640 2060651 2061074 2061079) (-1186 "TEMUTL.spad" 2060195 2060204 2060630 2060635) (-1185 "TBCMPPK.spad" 2058288 2058311 2060185 2060190) (-1184 "TBAGG.spad" 2057324 2057347 2058268 2058283) (-1183 "TBAGG.spad" 2056368 2056393 2057314 2057319) (-1182 "TANEXP.spad" 2055744 2055755 2056358 2056363) (-1181 "TABLE.spad" 2054155 2054178 2054425 2054452) (-1180 "TABLEAU.spad" 2053636 2053647 2054145 2054150) (-1179 "TABLBUMP.spad" 2050419 2050430 2053626 2053631) (-1178 "SYSTEM.spad" 2049647 2049656 2050409 2050414) (-1177 "SYSSOLP.spad" 2047120 2047131 2049637 2049642) (-1176 "SYSNNI.spad" 2046296 2046307 2047110 2047115) (-1175 "SYSINT.spad" 2045769 2045780 2046286 2046291) (-1174 "SYNTAX.spad" 2042039 2042048 2045759 2045764) (-1173 "SYMTAB.spad" 2040095 2040104 2042029 2042034) (-1172 "SYMS.spad" 2036080 2036089 2040085 2040090) (-1171 "SYMPOLY.spad" 2035087 2035098 2035169 2035296) (-1170 "SYMFUNC.spad" 2034562 2034573 2035077 2035082) (-1169 "SYMBOL.spad" 2031989 2031998 2034552 2034557) (-1168 "SWITCH.spad" 2028746 2028755 2031979 2031984) (-1167 "SUTS.spad" 2025645 2025673 2027213 2027310) (-1166 "SUPXS.spad" 2022780 2022808 2023777 2023926) (-1165 "SUP.spad" 2019549 2019560 2020330 2020483) (-1164 "SUPFRACF.spad" 2018654 2018672 2019539 2019544) (-1163 "SUP2.spad" 2018044 2018057 2018644 2018649) (-1162 "SUMRF.spad" 2017010 2017021 2018034 2018039) (-1161 "SUMFS.spad" 2016643 2016660 2017000 2017005) (-1160 "SULS.spad" 2007182 2007210 2008288 2008717) (-1159 "SUCHTAST.spad" 2006951 2006960 2007172 2007177) (-1158 "SUCH.spad" 2006631 2006646 2006941 2006946) (-1157 "SUBSPACE.spad" 1998638 1998653 2006621 2006626) (-1156 "SUBRESP.spad" 1997798 1997812 1998594 1998599) (-1155 "STTF.spad" 1993897 1993913 1997788 1997793) (-1154 "STTFNC.spad" 1990365 1990381 1993887 1993892) (-1153 "STTAYLOR.spad" 1982763 1982774 1990246 1990251) (-1152 "STRTBL.spad" 1981268 1981285 1981417 1981444) (-1151 "STRING.spad" 1980677 1980686 1980691 1980718) (-1150 "STRICAT.spad" 1980465 1980474 1980645 1980672) (-1149 "STREAM.spad" 1977323 1977334 1979990 1980005) (-1148 "STREAM3.spad" 1976868 1976883 1977313 1977318) (-1147 "STREAM2.spad" 1975936 1975949 1976858 1976863) (-1146 "STREAM1.spad" 1975640 1975651 1975926 1975931) (-1145 "STINPROD.spad" 1974546 1974562 1975630 1975635) (-1144 "STEP.spad" 1973747 1973756 1974536 1974541) (-1143 "STBL.spad" 1972273 1972301 1972440 1972455) (-1142 "STAGG.spad" 1971348 1971359 1972263 1972268) (-1141 "STAGG.spad" 1970421 1970434 1971338 1971343) (-1140 "STACK.spad" 1969772 1969783 1970028 1970055) (-1139 "SREGSET.spad" 1967476 1967493 1969418 1969445) (-1138 "SRDCMPK.spad" 1966021 1966041 1967466 1967471) (-1137 "SRAGG.spad" 1961118 1961127 1965989 1966016) (-1136 "SRAGG.spad" 1956235 1956246 1961108 1961113) (-1135 "SQMATRIX.spad" 1953851 1953869 1954767 1954854) (-1134 "SPLTREE.spad" 1948403 1948416 1953287 1953314) (-1133 "SPLNODE.spad" 1944991 1945004 1948393 1948398) (-1132 "SPFCAT.spad" 1943768 1943777 1944981 1944986) (-1131 "SPECOUT.spad" 1942318 1942327 1943758 1943763) (-1130 "SPADXPT.spad" 1934457 1934466 1942308 1942313) (-1129 "spad-parser.spad" 1933922 1933931 1934447 1934452) (-1128 "SPADAST.spad" 1933623 1933632 1933912 1933917) (-1127 "SPACEC.spad" 1917636 1917647 1933613 1933618) (-1126 "SPACE3.spad" 1917412 1917423 1917626 1917631) (-1125 "SORTPAK.spad" 1916957 1916970 1917368 1917373) (-1124 "SOLVETRA.spad" 1914714 1914725 1916947 1916952) (-1123 "SOLVESER.spad" 1913234 1913245 1914704 1914709) (-1122 "SOLVERAD.spad" 1909244 1909255 1913224 1913229) (-1121 "SOLVEFOR.spad" 1907664 1907682 1909234 1909239) (-1120 "SNTSCAT.spad" 1907264 1907281 1907632 1907659) (-1119 "SMTS.spad" 1905524 1905550 1906829 1906926) (-1118 "SMP.spad" 1902963 1902983 1903353 1903480) (-1117 "SMITH.spad" 1901806 1901831 1902953 1902958) (-1116 "SMATCAT.spad" 1899916 1899946 1901750 1901801) (-1115 "SMATCAT.spad" 1897958 1897990 1899794 1899799) (-1114 "SKAGG.spad" 1896919 1896930 1897926 1897953) (-1113 "SINT.spad" 1895745 1895754 1896785 1896914) (-1112 "SIMPAN.spad" 1895473 1895482 1895735 1895740) (-1111 "SIG.spad" 1894801 1894810 1895463 1895468) (-1110 "SIGNRF.spad" 1893909 1893920 1894791 1894796) (-1109 "SIGNEF.spad" 1893178 1893195 1893899 1893904) (-1108 "SIGAST.spad" 1892559 1892568 1893168 1893173) (-1107 "SHP.spad" 1890477 1890492 1892515 1892520) (-1106 "SHDP.spad" 1880188 1880215 1880697 1880828) (-1105 "SGROUP.spad" 1879796 1879805 1880178 1880183) (-1104 "SGROUP.spad" 1879402 1879413 1879786 1879791) (-1103 "SGCF.spad" 1872283 1872292 1879392 1879397) (-1102 "SFRTCAT.spad" 1871211 1871228 1872251 1872278) (-1101 "SFRGCD.spad" 1870274 1870294 1871201 1871206) (-1100 "SFQCMPK.spad" 1864911 1864931 1870264 1870269) (-1099 "SFORT.spad" 1864346 1864360 1864901 1864906) (-1098 "SEXOF.spad" 1864189 1864229 1864336 1864341) (-1097 "SEX.spad" 1864081 1864090 1864179 1864184) (-1096 "SEXCAT.spad" 1861632 1861672 1864071 1864076) (-1095 "SET.spad" 1859932 1859943 1861053 1861092) (-1094 "SETMN.spad" 1858366 1858383 1859922 1859927) (-1093 "SETCAT.spad" 1857851 1857860 1858356 1858361) (-1092 "SETCAT.spad" 1857334 1857345 1857841 1857846) (-1091 "SETAGG.spad" 1853855 1853866 1857314 1857329) (-1090 "SETAGG.spad" 1850384 1850397 1853845 1853850) (-1089 "SEQAST.spad" 1850087 1850096 1850374 1850379) (-1088 "SEGXCAT.spad" 1849209 1849222 1850077 1850082) (-1087 "SEG.spad" 1849022 1849033 1849128 1849133) (-1086 "SEGCAT.spad" 1847929 1847940 1849012 1849017) (-1085 "SEGBIND.spad" 1847001 1847012 1847884 1847889) (-1084 "SEGBIND2.spad" 1846697 1846710 1846991 1846996) (-1083 "SEGAST.spad" 1846411 1846420 1846687 1846692) (-1082 "SEG2.spad" 1845836 1845849 1846367 1846372) (-1081 "SDVAR.spad" 1845112 1845123 1845826 1845831) (-1080 "SDPOL.spad" 1842502 1842513 1842793 1842920) (-1079 "SCPKG.spad" 1840581 1840592 1842492 1842497) (-1078 "SCOPE.spad" 1839726 1839735 1840571 1840576) (-1077 "SCACHE.spad" 1838408 1838419 1839716 1839721) (-1076 "SASTCAT.spad" 1838317 1838326 1838398 1838403) (-1075 "SAOS.spad" 1838189 1838198 1838307 1838312) (-1074 "SAERFFC.spad" 1837902 1837922 1838179 1838184) (-1073 "SAE.spad" 1836077 1836093 1836688 1836823) (-1072 "SAEFACT.spad" 1835778 1835798 1836067 1836072) (-1071 "RURPK.spad" 1833419 1833435 1835768 1835773) (-1070 "RULESET.spad" 1832860 1832884 1833409 1833414) (-1069 "RULE.spad" 1831064 1831088 1832850 1832855) (-1068 "RULECOLD.spad" 1830916 1830929 1831054 1831059) (-1067 "RSTRCAST.spad" 1830633 1830642 1830906 1830911) (-1066 "RSETGCD.spad" 1827011 1827031 1830623 1830628) (-1065 "RSETCAT.spad" 1816795 1816812 1826979 1827006) (-1064 "RSETCAT.spad" 1806599 1806618 1816785 1816790) (-1063 "RSDCMPK.spad" 1805051 1805071 1806589 1806594) (-1062 "RRCC.spad" 1803435 1803465 1805041 1805046) (-1061 "RRCC.spad" 1801817 1801849 1803425 1803430) (-1060 "RPTAST.spad" 1801519 1801528 1801807 1801812) (-1059 "RPOLCAT.spad" 1780879 1780894 1801387 1801514) (-1058 "RPOLCAT.spad" 1759953 1759970 1780463 1780468) (-1057 "ROUTINE.spad" 1755816 1755825 1758600 1758627) (-1056 "ROMAN.spad" 1755144 1755153 1755682 1755811) (-1055 "ROIRC.spad" 1754224 1754256 1755134 1755139) (-1054 "RNS.spad" 1753127 1753136 1754126 1754219) (-1053 "RNS.spad" 1752116 1752127 1753117 1753122) (-1052 "RNG.spad" 1751851 1751860 1752106 1752111) (-1051 "RMODULE.spad" 1751489 1751500 1751841 1751846) (-1050 "RMCAT2.spad" 1750897 1750954 1751479 1751484) (-1049 "RMATRIX.spad" 1749721 1749740 1750064 1750103) (-1048 "RMATCAT.spad" 1745254 1745285 1749677 1749716) (-1047 "RMATCAT.spad" 1740677 1740710 1745102 1745107) (-1046 "RINTERP.spad" 1740565 1740585 1740667 1740672) (-1045 "RING.spad" 1740035 1740044 1740545 1740560) (-1044 "RING.spad" 1739513 1739524 1740025 1740030) (-1043 "RIDIST.spad" 1738897 1738906 1739503 1739508) (-1042 "RGCHAIN.spad" 1737476 1737492 1738382 1738409) (-1041 "RGBCSPC.spad" 1737257 1737269 1737466 1737471) (-1040 "RGBCMDL.spad" 1736787 1736799 1737247 1737252) (-1039 "RF.spad" 1734401 1734412 1736777 1736782) (-1038 "RFFACTOR.spad" 1733863 1733874 1734391 1734396) (-1037 "RFFACT.spad" 1733598 1733610 1733853 1733858) (-1036 "RFDIST.spad" 1732586 1732595 1733588 1733593) (-1035 "RETSOL.spad" 1732003 1732016 1732576 1732581) (-1034 "RETRACT.spad" 1731431 1731442 1731993 1731998) (-1033 "RETRACT.spad" 1730857 1730870 1731421 1731426) (-1032 "RETAST.spad" 1730669 1730678 1730847 1730852) (-1031 "RESULT.spad" 1728729 1728738 1729316 1729343) (-1030 "RESRING.spad" 1728076 1728123 1728667 1728724) (-1029 "RESLATC.spad" 1727400 1727411 1728066 1728071) (-1028 "REPSQ.spad" 1727129 1727140 1727390 1727395) (-1027 "REP.spad" 1724681 1724690 1727119 1727124) (-1026 "REPDB.spad" 1724386 1724397 1724671 1724676) (-1025 "REP2.spad" 1713958 1713969 1724228 1724233) (-1024 "REP1.spad" 1707948 1707959 1713908 1713913) (-1023 "REGSET.spad" 1705745 1705762 1707594 1707621) (-1022 "REF.spad" 1705074 1705085 1705700 1705705) (-1021 "REDORDER.spad" 1704250 1704267 1705064 1705069) (-1020 "RECLOS.spad" 1703033 1703053 1703737 1703830) (-1019 "REALSOLV.spad" 1702165 1702174 1703023 1703028) (-1018 "REAL.spad" 1702037 1702046 1702155 1702160) (-1017 "REAL0Q.spad" 1699319 1699334 1702027 1702032) (-1016 "REAL0.spad" 1696147 1696162 1699309 1699314) (-1015 "RDUCEAST.spad" 1695868 1695877 1696137 1696142) (-1014 "RDIV.spad" 1695519 1695544 1695858 1695863) (-1013 "RDIST.spad" 1695082 1695093 1695509 1695514) (-1012 "RDETRS.spad" 1693878 1693896 1695072 1695077) (-1011 "RDETR.spad" 1691985 1692003 1693868 1693873) (-1010 "RDEEFS.spad" 1691058 1691075 1691975 1691980) (-1009 "RDEEF.spad" 1690054 1690071 1691048 1691053) (-1008 "RCFIELD.spad" 1687240 1687249 1689956 1690049) (-1007 "RCFIELD.spad" 1684512 1684523 1687230 1687235) (-1006 "RCAGG.spad" 1682424 1682435 1684502 1684507) (-1005 "RCAGG.spad" 1680263 1680276 1682343 1682348) (-1004 "RATRET.spad" 1679623 1679634 1680253 1680258) (-1003 "RATFACT.spad" 1679315 1679327 1679613 1679618) (-1002 "RANDSRC.spad" 1678634 1678643 1679305 1679310) (-1001 "RADUTIL.spad" 1678388 1678397 1678624 1678629) (-1000 "RADIX.spad" 1675289 1675303 1676855 1676948) (-999 "RADFF.spad" 1673703 1673739 1673821 1673977) (-998 "RADCAT.spad" 1673297 1673305 1673693 1673698) (-997 "RADCAT.spad" 1672889 1672899 1673287 1673292) (-996 "QUEUE.spad" 1672232 1672242 1672496 1672523) (-995 "QUAT.spad" 1670814 1670824 1671156 1671221) (-994 "QUATCT2.spad" 1670433 1670451 1670804 1670809) (-993 "QUATCAT.spad" 1668598 1668608 1670363 1670428) (-992 "QUATCAT.spad" 1666514 1666526 1668281 1668286) (-991 "QUAGG.spad" 1665340 1665350 1666482 1666509) (-990 "QQUTAST.spad" 1665109 1665117 1665330 1665335) (-989 "QFORM.spad" 1664572 1664586 1665099 1665104) (-988 "QFCAT.spad" 1663275 1663285 1664474 1664567) (-987 "QFCAT.spad" 1661569 1661581 1662770 1662775) (-986 "QFCAT2.spad" 1661260 1661276 1661559 1661564) (-985 "QEQUAT.spad" 1660817 1660825 1661250 1661255) (-984 "QCMPACK.spad" 1655564 1655583 1660807 1660812) (-983 "QALGSET.spad" 1651639 1651671 1655478 1655483) (-982 "QALGSET2.spad" 1649635 1649653 1651629 1651634) (-981 "PWFFINTB.spad" 1646945 1646966 1649625 1649630) (-980 "PUSHVAR.spad" 1646274 1646293 1646935 1646940) (-979 "PTRANFN.spad" 1642400 1642410 1646264 1646269) (-978 "PTPACK.spad" 1639488 1639498 1642390 1642395) (-977 "PTFUNC2.spad" 1639309 1639323 1639478 1639483) (-976 "PTCAT.spad" 1638558 1638568 1639277 1639304) (-975 "PSQFR.spad" 1637865 1637889 1638548 1638553) (-974 "PSEUDLIN.spad" 1636723 1636733 1637855 1637860) (-973 "PSETPK.spad" 1622156 1622172 1636601 1636606) (-972 "PSETCAT.spad" 1616076 1616099 1622136 1622151) (-971 "PSETCAT.spad" 1609970 1609995 1616032 1616037) (-970 "PSCURVE.spad" 1608953 1608961 1609960 1609965) (-969 "PSCAT.spad" 1607720 1607749 1608851 1608948) (-968 "PSCAT.spad" 1606577 1606608 1607710 1607715) (-967 "PRTITION.spad" 1605522 1605530 1606567 1606572) (-966 "PRTDAST.spad" 1605241 1605249 1605512 1605517) (-965 "PRS.spad" 1594803 1594820 1605197 1605202) (-964 "PRQAGG.spad" 1594234 1594244 1594771 1594798) (-963 "PROPLOG.spad" 1593637 1593645 1594224 1594229) (-962 "PROPFRML.spad" 1591555 1591566 1593627 1593632) (-961 "PROPERTY.spad" 1591049 1591057 1591545 1591550) (-960 "PRODUCT.spad" 1588729 1588741 1589015 1589070) (-959 "PR.spad" 1587115 1587127 1587820 1587947) (-958 "PRINT.spad" 1586867 1586875 1587105 1587110) (-957 "PRIMES.spad" 1585118 1585128 1586857 1586862) (-956 "PRIMELT.spad" 1583099 1583113 1585108 1585113) (-955 "PRIMCAT.spad" 1582722 1582730 1583089 1583094) (-954 "PRIMARR.spad" 1581727 1581737 1581905 1581932) (-953 "PRIMARR2.spad" 1580450 1580462 1581717 1581722) (-952 "PREASSOC.spad" 1579822 1579834 1580440 1580445) (-951 "PPCURVE.spad" 1578959 1578967 1579812 1579817) (-950 "PORTNUM.spad" 1578734 1578742 1578949 1578954) (-949 "POLYROOT.spad" 1577563 1577585 1578690 1578695) (-948 "POLY.spad" 1574860 1574870 1575377 1575504) (-947 "POLYLIFT.spad" 1574121 1574144 1574850 1574855) (-946 "POLYCATQ.spad" 1572223 1572245 1574111 1574116) (-945 "POLYCAT.spad" 1565629 1565650 1572091 1572218) (-944 "POLYCAT.spad" 1558337 1558360 1564801 1564806) (-943 "POLY2UP.spad" 1557785 1557799 1558327 1558332) (-942 "POLY2.spad" 1557380 1557392 1557775 1557780) (-941 "POLUTIL.spad" 1556321 1556350 1557336 1557341) (-940 "POLTOPOL.spad" 1555069 1555084 1556311 1556316) (-939 "POINT.spad" 1553908 1553918 1553995 1554022) (-938 "PNTHEORY.spad" 1550574 1550582 1553898 1553903) (-937 "PMTOOLS.spad" 1549331 1549345 1550564 1550569) (-936 "PMSYM.spad" 1548876 1548886 1549321 1549326) (-935 "PMQFCAT.spad" 1548463 1548477 1548866 1548871) (-934 "PMPRED.spad" 1547932 1547946 1548453 1548458) (-933 "PMPREDFS.spad" 1547376 1547398 1547922 1547927) (-932 "PMPLCAT.spad" 1546446 1546464 1547308 1547313) (-931 "PMLSAGG.spad" 1546027 1546041 1546436 1546441) (-930 "PMKERNEL.spad" 1545594 1545606 1546017 1546022) (-929 "PMINS.spad" 1545170 1545180 1545584 1545589) (-928 "PMFS.spad" 1544743 1544761 1545160 1545165) (-927 "PMDOWN.spad" 1544029 1544043 1544733 1544738) (-926 "PMASS.spad" 1543041 1543049 1544019 1544024) (-925 "PMASSFS.spad" 1542010 1542026 1543031 1543036) (-924 "PLOTTOOL.spad" 1541790 1541798 1542000 1542005) (-923 "PLOT.spad" 1536621 1536629 1541780 1541785) (-922 "PLOT3D.spad" 1533041 1533049 1536611 1536616) (-921 "PLOT1.spad" 1532182 1532192 1533031 1533036) (-920 "PLEQN.spad" 1519398 1519425 1532172 1532177) (-919 "PINTERP.spad" 1519014 1519033 1519388 1519393) (-918 "PINTERPA.spad" 1518796 1518812 1519004 1519009) (-917 "PI.spad" 1518403 1518411 1518770 1518791) (-916 "PID.spad" 1517359 1517367 1518329 1518398) (-915 "PICOERCE.spad" 1517016 1517026 1517349 1517354) (-914 "PGROEB.spad" 1515613 1515627 1517006 1517011) (-913 "PGE.spad" 1506866 1506874 1515603 1515608) (-912 "PGCD.spad" 1505748 1505765 1506856 1506861) (-911 "PFRPAC.spad" 1504891 1504901 1505738 1505743) (-910 "PFR.spad" 1501548 1501558 1504793 1504886) (-909 "PFOTOOLS.spad" 1500806 1500822 1501538 1501543) (-908 "PFOQ.spad" 1500176 1500194 1500796 1500801) (-907 "PFO.spad" 1499595 1499622 1500166 1500171) (-906 "PF.spad" 1499169 1499181 1499400 1499493) (-905 "PFECAT.spad" 1496835 1496843 1499095 1499164) (-904 "PFECAT.spad" 1494529 1494539 1496791 1496796) (-903 "PFBRU.spad" 1492399 1492411 1494519 1494524) (-902 "PFBR.spad" 1489937 1489960 1492389 1492394) (-901 "PERM.spad" 1485618 1485628 1489767 1489782) (-900 "PERMGRP.spad" 1480354 1480364 1485608 1485613) (-899 "PERMCAT.spad" 1478906 1478916 1480334 1480349) (-898 "PERMAN.spad" 1477438 1477452 1478896 1478901) (-897 "PENDTREE.spad" 1476777 1476787 1477067 1477072) (-896 "PDRING.spad" 1475268 1475278 1476757 1476772) (-895 "PDRING.spad" 1473767 1473779 1475258 1475263) (-894 "PDEPROB.spad" 1472782 1472790 1473757 1473762) (-893 "PDEPACK.spad" 1466784 1466792 1472772 1472777) (-892 "PDECOMP.spad" 1466246 1466263 1466774 1466779) (-891 "PDECAT.spad" 1464600 1464608 1466236 1466241) (-890 "PCOMP.spad" 1464451 1464464 1464590 1464595) (-889 "PBWLB.spad" 1463033 1463050 1464441 1464446) (-888 "PATTERN.spad" 1457464 1457474 1463023 1463028) (-887 "PATTERN2.spad" 1457200 1457212 1457454 1457459) (-886 "PATTERN1.spad" 1455502 1455518 1457190 1457195) (-885 "PATRES.spad" 1453049 1453061 1455492 1455497) (-884 "PATRES2.spad" 1452711 1452725 1453039 1453044) (-883 "PATMATCH.spad" 1450868 1450899 1452419 1452424) (-882 "PATMAB.spad" 1450293 1450303 1450858 1450863) (-881 "PATLRES.spad" 1449377 1449391 1450283 1450288) (-880 "PATAB.spad" 1449141 1449151 1449367 1449372) (-879 "PARTPERM.spad" 1446503 1446511 1449131 1449136) (-878 "PARSURF.spad" 1445931 1445959 1446493 1446498) (-877 "PARSU2.spad" 1445726 1445742 1445921 1445926) (-876 "script-parser.spad" 1445246 1445254 1445716 1445721) (-875 "PARSCURV.spad" 1444674 1444702 1445236 1445241) (-874 "PARSC2.spad" 1444463 1444479 1444664 1444669) (-873 "PARPCURV.spad" 1443921 1443949 1444453 1444458) (-872 "PARPC2.spad" 1443710 1443726 1443911 1443916) (-871 "PAN2EXPR.spad" 1443122 1443130 1443700 1443705) (-870 "PALETTE.spad" 1442092 1442100 1443112 1443117) (-869 "PAIR.spad" 1441075 1441088 1441680 1441685) (-868 "PADICRC.spad" 1438405 1438423 1439580 1439673) (-867 "PADICRAT.spad" 1436420 1436432 1436641 1436734) (-866 "PADIC.spad" 1436115 1436127 1436346 1436415) (-865 "PADICCT.spad" 1434656 1434668 1436041 1436110) (-864 "PADEPAC.spad" 1433335 1433354 1434646 1434651) (-863 "PADE.spad" 1432075 1432091 1433325 1433330) (-862 "OWP.spad" 1431315 1431345 1431933 1432000) (-861 "OVERSET.spad" 1430888 1430896 1431305 1431310) (-860 "OVAR.spad" 1430669 1430692 1430878 1430883) (-859 "OUT.spad" 1429753 1429761 1430659 1430664) (-858 "OUTFORM.spad" 1419049 1419057 1429743 1429748) (-857 "OUTBFILE.spad" 1418467 1418475 1419039 1419044) (-856 "OUTBCON.spad" 1417465 1417473 1418457 1418462) (-855 "OUTBCON.spad" 1416461 1416471 1417455 1417460) (-854 "OSI.spad" 1415936 1415944 1416451 1416456) (-853 "OSGROUP.spad" 1415854 1415862 1415926 1415931) (-852 "ORTHPOL.spad" 1414315 1414325 1415771 1415776) (-851 "OREUP.spad" 1413768 1413796 1413995 1414034) (-850 "ORESUP.spad" 1413067 1413091 1413448 1413487) (-849 "OREPCTO.spad" 1410886 1410898 1412987 1412992) (-848 "OREPCAT.spad" 1404943 1404953 1410842 1410881) (-847 "OREPCAT.spad" 1398890 1398902 1404791 1404796) (-846 "ORDSET.spad" 1398056 1398064 1398880 1398885) (-845 "ORDSET.spad" 1397220 1397230 1398046 1398051) (-844 "ORDRING.spad" 1396610 1396618 1397200 1397215) (-843 "ORDRING.spad" 1396008 1396018 1396600 1396605) (-842 "ORDMON.spad" 1395863 1395871 1395998 1396003) (-841 "ORDFUNS.spad" 1394989 1395005 1395853 1395858) (-840 "ORDFIN.spad" 1394809 1394817 1394979 1394984) (-839 "ORDCOMP.spad" 1393274 1393284 1394356 1394385) (-838 "ORDCOMP2.spad" 1392559 1392571 1393264 1393269) (-837 "OPTPROB.spad" 1391197 1391205 1392549 1392554) (-836 "OPTPACK.spad" 1383582 1383590 1391187 1391192) (-835 "OPTCAT.spad" 1381257 1381265 1383572 1383577) (-834 "OPSIG.spad" 1380909 1380917 1381247 1381252) (-833 "OPQUERY.spad" 1380458 1380466 1380899 1380904) (-832 "OP.spad" 1380200 1380210 1380280 1380347) (-831 "OPERCAT.spad" 1379788 1379798 1380190 1380195) (-830 "OPERCAT.spad" 1379374 1379386 1379778 1379783) (-829 "ONECOMP.spad" 1378119 1378129 1378921 1378950) (-828 "ONECOMP2.spad" 1377537 1377549 1378109 1378114) (-827 "OMSERVER.spad" 1376539 1376547 1377527 1377532) (-826 "OMSAGG.spad" 1376327 1376337 1376495 1376534) (-825 "OMPKG.spad" 1374939 1374947 1376317 1376322) (-824 "OM.spad" 1373904 1373912 1374929 1374934) (-823 "OMLO.spad" 1373329 1373341 1373790 1373829) (-822 "OMEXPR.spad" 1373163 1373173 1373319 1373324) (-821 "OMERR.spad" 1372706 1372714 1373153 1373158) (-820 "OMERRK.spad" 1371740 1371748 1372696 1372701) (-819 "OMENC.spad" 1371084 1371092 1371730 1371735) (-818 "OMDEV.spad" 1365373 1365381 1371074 1371079) (-817 "OMCONN.spad" 1364782 1364790 1365363 1365368) (-816 "OINTDOM.spad" 1364545 1364553 1364708 1364777) (-815 "OFMONOID.spad" 1360732 1360742 1364535 1364540) (-814 "ODVAR.spad" 1359993 1360003 1360722 1360727) (-813 "ODR.spad" 1359637 1359663 1359805 1359954) (-812 "ODPOL.spad" 1356983 1356993 1357323 1357450) (-811 "ODP.spad" 1346830 1346850 1347203 1347334) (-810 "ODETOOLS.spad" 1345413 1345432 1346820 1346825) (-809 "ODESYS.spad" 1343063 1343080 1345403 1345408) (-808 "ODERTRIC.spad" 1339004 1339021 1343020 1343025) (-807 "ODERED.spad" 1338391 1338415 1338994 1338999) (-806 "ODERAT.spad" 1335942 1335959 1338381 1338386) (-805 "ODEPRRIC.spad" 1332833 1332855 1335932 1335937) (-804 "ODEPROB.spad" 1332090 1332098 1332823 1332828) (-803 "ODEPRIM.spad" 1329364 1329386 1332080 1332085) (-802 "ODEPAL.spad" 1328740 1328764 1329354 1329359) (-801 "ODEPACK.spad" 1315342 1315350 1328730 1328735) (-800 "ODEINT.spad" 1314773 1314789 1315332 1315337) (-799 "ODEIFTBL.spad" 1312168 1312176 1314763 1314768) (-798 "ODEEF.spad" 1307535 1307551 1312158 1312163) (-797 "ODECONST.spad" 1307054 1307072 1307525 1307530) (-796 "ODECAT.spad" 1305650 1305658 1307044 1307049) (-795 "OCT.spad" 1303788 1303798 1304504 1304543) (-794 "OCTCT2.spad" 1303432 1303453 1303778 1303783) (-793 "OC.spad" 1301206 1301216 1303388 1303427) (-792 "OC.spad" 1298705 1298717 1300889 1300894) (-791 "OCAMON.spad" 1298553 1298561 1298695 1298700) (-790 "OASGP.spad" 1298368 1298376 1298543 1298548) (-789 "OAMONS.spad" 1297888 1297896 1298358 1298363) (-788 "OAMON.spad" 1297749 1297757 1297878 1297883) (-787 "OAGROUP.spad" 1297611 1297619 1297739 1297744) (-786 "NUMTUBE.spad" 1297198 1297214 1297601 1297606) (-785 "NUMQUAD.spad" 1285060 1285068 1297188 1297193) (-784 "NUMODE.spad" 1276196 1276204 1285050 1285055) (-783 "NUMINT.spad" 1273754 1273762 1276186 1276191) (-782 "NUMFMT.spad" 1272594 1272602 1273744 1273749) (-781 "NUMERIC.spad" 1264666 1264676 1272399 1272404) (-780 "NTSCAT.spad" 1263168 1263184 1264634 1264661) (-779 "NTPOLFN.spad" 1262713 1262723 1263085 1263090) (-778 "NSUP.spad" 1255723 1255733 1260263 1260416) (-777 "NSUP2.spad" 1255115 1255127 1255713 1255718) (-776 "NSMP.spad" 1251310 1251329 1251618 1251745) (-775 "NREP.spad" 1249682 1249696 1251300 1251305) (-774 "NPCOEF.spad" 1248928 1248948 1249672 1249677) (-773 "NORMRETR.spad" 1248526 1248565 1248918 1248923) (-772 "NORMPK.spad" 1246428 1246447 1248516 1248521) (-771 "NORMMA.spad" 1246116 1246142 1246418 1246423) (-770 "NONE.spad" 1245857 1245865 1246106 1246111) (-769 "NONE1.spad" 1245533 1245543 1245847 1245852) (-768 "NODE1.spad" 1245002 1245018 1245523 1245528) (-767 "NNI.spad" 1243889 1243897 1244976 1244997) (-766 "NLINSOL.spad" 1242511 1242521 1243879 1243884) (-765 "NIPROB.spad" 1241052 1241060 1242501 1242506) (-764 "NFINTBAS.spad" 1238512 1238529 1241042 1241047) (-763 "NETCLT.spad" 1238486 1238497 1238502 1238507) (-762 "NCODIV.spad" 1236684 1236700 1238476 1238481) (-761 "NCNTFRAC.spad" 1236326 1236340 1236674 1236679) (-760 "NCEP.spad" 1234486 1234500 1236316 1236321) (-759 "NASRING.spad" 1234082 1234090 1234476 1234481) (-758 "NASRING.spad" 1233676 1233686 1234072 1234077) (-757 "NARNG.spad" 1233020 1233028 1233666 1233671) (-756 "NARNG.spad" 1232362 1232372 1233010 1233015) (-755 "NAGSP.spad" 1231435 1231443 1232352 1232357) (-754 "NAGS.spad" 1220960 1220968 1231425 1231430) (-753 "NAGF07.spad" 1219353 1219361 1220950 1220955) (-752 "NAGF04.spad" 1213585 1213593 1219343 1219348) (-751 "NAGF02.spad" 1207394 1207402 1213575 1213580) (-750 "NAGF01.spad" 1202997 1203005 1207384 1207389) (-749 "NAGE04.spad" 1196457 1196465 1202987 1202992) (-748 "NAGE02.spad" 1186799 1186807 1196447 1196452) (-747 "NAGE01.spad" 1182683 1182691 1186789 1186794) (-746 "NAGD03.spad" 1180603 1180611 1182673 1182678) (-745 "NAGD02.spad" 1173134 1173142 1180593 1180598) (-744 "NAGD01.spad" 1167247 1167255 1173124 1173129) (-743 "NAGC06.spad" 1163034 1163042 1167237 1167242) (-742 "NAGC05.spad" 1161503 1161511 1163024 1163029) (-741 "NAGC02.spad" 1160758 1160766 1161493 1161498) (-740 "NAALG.spad" 1160293 1160303 1160726 1160753) (-739 "NAALG.spad" 1159848 1159860 1160283 1160288) (-738 "MULTSQFR.spad" 1156806 1156823 1159838 1159843) (-737 "MULTFACT.spad" 1156189 1156206 1156796 1156801) (-736 "MTSCAT.spad" 1154223 1154244 1156087 1156184) (-735 "MTHING.spad" 1153880 1153890 1154213 1154218) (-734 "MSYSCMD.spad" 1153314 1153322 1153870 1153875) (-733 "MSET.spad" 1151256 1151266 1153020 1153059) (-732 "MSETAGG.spad" 1151101 1151111 1151224 1151251) (-731 "MRING.spad" 1148072 1148084 1150809 1150876) (-730 "MRF2.spad" 1147640 1147654 1148062 1148067) (-729 "MRATFAC.spad" 1147186 1147203 1147630 1147635) (-728 "MPRFF.spad" 1145216 1145235 1147176 1147181) (-727 "MPOLY.spad" 1142651 1142666 1143010 1143137) (-726 "MPCPF.spad" 1141915 1141934 1142641 1142646) (-725 "MPC3.spad" 1141730 1141770 1141905 1141910) (-724 "MPC2.spad" 1141372 1141405 1141720 1141725) (-723 "MONOTOOL.spad" 1139707 1139724 1141362 1141367) (-722 "MONOID.spad" 1139026 1139034 1139697 1139702) (-721 "MONOID.spad" 1138343 1138353 1139016 1139021) (-720 "MONOGEN.spad" 1137089 1137102 1138203 1138338) (-719 "MONOGEN.spad" 1135857 1135872 1136973 1136978) (-718 "MONADWU.spad" 1133871 1133879 1135847 1135852) (-717 "MONADWU.spad" 1131883 1131893 1133861 1133866) (-716 "MONAD.spad" 1131027 1131035 1131873 1131878) (-715 "MONAD.spad" 1130169 1130179 1131017 1131022) (-714 "MOEBIUS.spad" 1128855 1128869 1130149 1130164) (-713 "MODULE.spad" 1128725 1128735 1128823 1128850) (-712 "MODULE.spad" 1128615 1128627 1128715 1128720) (-711 "MODRING.spad" 1127946 1127985 1128595 1128610) (-710 "MODOP.spad" 1126605 1126617 1127768 1127835) (-709 "MODMONOM.spad" 1126334 1126352 1126595 1126600) (-708 "MODMON.spad" 1123093 1123109 1123812 1123965) (-707 "MODFIELD.spad" 1122451 1122490 1122995 1123088) (-706 "MMLFORM.spad" 1121311 1121319 1122441 1122446) (-705 "MMAP.spad" 1121051 1121085 1121301 1121306) (-704 "MLO.spad" 1119478 1119488 1121007 1121046) (-703 "MLIFT.spad" 1118050 1118067 1119468 1119473) (-702 "MKUCFUNC.spad" 1117583 1117601 1118040 1118045) (-701 "MKRECORD.spad" 1117185 1117198 1117573 1117578) (-700 "MKFUNC.spad" 1116566 1116576 1117175 1117180) (-699 "MKFLCFN.spad" 1115522 1115532 1116556 1116561) (-698 "MKCHSET.spad" 1115387 1115397 1115512 1115517) (-697 "MKBCFUNC.spad" 1114872 1114890 1115377 1115382) (-696 "MINT.spad" 1114311 1114319 1114774 1114867) (-695 "MHROWRED.spad" 1112812 1112822 1114301 1114306) (-694 "MFLOAT.spad" 1111328 1111336 1112702 1112807) (-693 "MFINFACT.spad" 1110728 1110750 1111318 1111323) (-692 "MESH.spad" 1108460 1108468 1110718 1110723) (-691 "MDDFACT.spad" 1106653 1106663 1108450 1108455) (-690 "MDAGG.spad" 1105940 1105950 1106633 1106648) (-689 "MCMPLX.spad" 1101914 1101922 1102528 1102729) (-688 "MCDEN.spad" 1101122 1101134 1101904 1101909) (-687 "MCALCFN.spad" 1098224 1098250 1101112 1101117) (-686 "MAYBE.spad" 1097508 1097519 1098214 1098219) (-685 "MATSTOR.spad" 1094784 1094794 1097498 1097503) (-684 "MATRIX.spad" 1093488 1093498 1093972 1093999) (-683 "MATLIN.spad" 1090814 1090838 1093372 1093377) (-682 "MATCAT.spad" 1082399 1082421 1090782 1090809) (-681 "MATCAT.spad" 1073856 1073880 1082241 1082246) (-680 "MATCAT2.spad" 1073124 1073172 1073846 1073851) (-679 "MAPPKG3.spad" 1072023 1072037 1073114 1073119) (-678 "MAPPKG2.spad" 1071357 1071369 1072013 1072018) (-677 "MAPPKG1.spad" 1070175 1070185 1071347 1071352) (-676 "MAPPAST.spad" 1069488 1069496 1070165 1070170) (-675 "MAPHACK3.spad" 1069296 1069310 1069478 1069483) (-674 "MAPHACK2.spad" 1069061 1069073 1069286 1069291) (-673 "MAPHACK1.spad" 1068691 1068701 1069051 1069056) (-672 "MAGMA.spad" 1066481 1066498 1068681 1068686) (-671 "MACROAST.spad" 1066060 1066068 1066471 1066476) (-670 "M3D.spad" 1063756 1063766 1065438 1065443) (-669 "LZSTAGG.spad" 1060984 1060994 1063746 1063751) (-668 "LZSTAGG.spad" 1058210 1058222 1060974 1060979) (-667 "LWORD.spad" 1054915 1054932 1058200 1058205) (-666 "LSTAST.spad" 1054699 1054707 1054905 1054910) (-665 "LSQM.spad" 1052925 1052939 1053323 1053374) (-664 "LSPP.spad" 1052458 1052475 1052915 1052920) (-663 "LSMP.spad" 1051298 1051326 1052448 1052453) (-662 "LSMP1.spad" 1049102 1049116 1051288 1051293) (-661 "LSAGG.spad" 1048771 1048781 1049070 1049097) (-660 "LSAGG.spad" 1048460 1048472 1048761 1048766) (-659 "LPOLY.spad" 1047414 1047433 1048316 1048385) (-658 "LPEFRAC.spad" 1046671 1046681 1047404 1047409) (-657 "LO.spad" 1046072 1046086 1046605 1046632) (-656 "LOGIC.spad" 1045674 1045682 1046062 1046067) (-655 "LOGIC.spad" 1045274 1045284 1045664 1045669) (-654 "LODOOPS.spad" 1044192 1044204 1045264 1045269) (-653 "LODO.spad" 1043576 1043592 1043872 1043911) (-652 "LODOF.spad" 1042620 1042637 1043533 1043538) (-651 "LODOCAT.spad" 1041278 1041288 1042576 1042615) (-650 "LODOCAT.spad" 1039934 1039946 1041234 1041239) (-649 "LODO2.spad" 1039207 1039219 1039614 1039653) (-648 "LODO1.spad" 1038607 1038617 1038887 1038926) (-647 "LODEEF.spad" 1037379 1037397 1038597 1038602) (-646 "LNAGG.spad" 1033181 1033191 1037369 1037374) (-645 "LNAGG.spad" 1028947 1028959 1033137 1033142) (-644 "LMOPS.spad" 1025683 1025700 1028937 1028942) (-643 "LMODULE.spad" 1025325 1025335 1025673 1025678) (-642 "LMDICT.spad" 1024608 1024618 1024876 1024903) (-641 "LITERAL.spad" 1024514 1024525 1024598 1024603) (-640 "LIST.spad" 1022232 1022242 1023661 1023688) (-639 "LIST3.spad" 1021523 1021537 1022222 1022227) (-638 "LIST2.spad" 1020163 1020175 1021513 1021518) (-637 "LIST2MAP.spad" 1017040 1017052 1020153 1020158) (-636 "LINEXP.spad" 1016472 1016482 1017020 1017035) (-635 "LINDEP.spad" 1015249 1015261 1016384 1016389) (-634 "LIMITRF.spad" 1013163 1013173 1015239 1015244) (-633 "LIMITPS.spad" 1012046 1012059 1013153 1013158) (-632 "LIE.spad" 1010060 1010072 1011336 1011481) (-631 "LIECAT.spad" 1009536 1009546 1009986 1010055) (-630 "LIECAT.spad" 1009040 1009052 1009492 1009497) (-629 "LIB.spad" 1007088 1007096 1007699 1007714) (-628 "LGROBP.spad" 1004441 1004460 1007078 1007083) (-627 "LF.spad" 1003360 1003376 1004431 1004436) (-626 "LFCAT.spad" 1002379 1002387 1003350 1003355) (-625 "LEXTRIPK.spad" 997882 997897 1002369 1002374) (-624 "LEXP.spad" 995885 995912 997862 997877) (-623 "LETAST.spad" 995584 995592 995875 995880) (-622 "LEADCDET.spad" 993968 993985 995574 995579) (-621 "LAZM3PK.spad" 992672 992694 993958 993963) (-620 "LAUPOL.spad" 991361 991374 992265 992334) (-619 "LAPLACE.spad" 990934 990950 991351 991356) (-618 "LA.spad" 990374 990388 990856 990895) (-617 "LALG.spad" 990150 990160 990354 990369) (-616 "LALG.spad" 989934 989946 990140 990145) (-615 "KVTFROM.spad" 989669 989679 989924 989929) (-614 "KTVLOGIC.spad" 989092 989100 989659 989664) (-613 "KRCFROM.spad" 988830 988840 989082 989087) (-612 "KOVACIC.spad" 987543 987560 988820 988825) (-611 "KONVERT.spad" 987265 987275 987533 987538) (-610 "KOERCE.spad" 987002 987012 987255 987260) (-609 "KERNEL.spad" 985537 985547 986786 986791) (-608 "KERNEL2.spad" 985240 985252 985527 985532) (-607 "KDAGG.spad" 984343 984365 985220 985235) (-606 "KDAGG.spad" 983454 983478 984333 984338) (-605 "KAFILE.spad" 982417 982433 982652 982679) (-604 "JORDAN.spad" 980244 980256 981707 981852) (-603 "JOINAST.spad" 979938 979946 980234 980239) (-602 "JAVACODE.spad" 979804 979812 979928 979933) (-601 "IXAGG.spad" 977927 977951 979794 979799) (-600 "IXAGG.spad" 975905 975931 977774 977779) (-599 "IVECTOR.spad" 974676 974691 974831 974858) (-598 "ITUPLE.spad" 973821 973831 974666 974671) (-597 "ITRIGMNP.spad" 972632 972651 973811 973816) (-596 "ITFUN3.spad" 972126 972140 972622 972627) (-595 "ITFUN2.spad" 971856 971868 972116 972121) (-594 "ITAYLOR.spad" 969648 969663 971692 971817) (-593 "ISUPS.spad" 962059 962074 968622 968719) (-592 "ISUMP.spad" 961556 961572 962049 962054) (-591 "ISTRING.spad" 960559 960572 960725 960752) (-590 "ISAST.spad" 960278 960286 960549 960554) (-589 "IRURPK.spad" 958991 959010 960268 960273) (-588 "IRSN.spad" 956951 956959 958981 958986) (-587 "IRRF2F.spad" 955426 955436 956907 956912) (-586 "IRREDFFX.spad" 955027 955038 955416 955421) (-585 "IROOT.spad" 953358 953368 955017 955022) (-584 "IR.spad" 951147 951161 953213 953240) (-583 "IR2.spad" 950167 950183 951137 951142) (-582 "IR2F.spad" 949367 949383 950157 950162) (-581 "IPRNTPK.spad" 949127 949135 949357 949362) (-580 "IPF.spad" 948692 948704 948932 949025) (-579 "IPADIC.spad" 948453 948479 948618 948687) (-578 "IP4ADDR.spad" 948010 948018 948443 948448) (-577 "IOMODE.spad" 947631 947639 948000 948005) (-576 "IOBFILE.spad" 946992 947000 947621 947626) (-575 "IOBCON.spad" 946857 946865 946982 946987) (-574 "INVLAPLA.spad" 946502 946518 946847 946852) (-573 "INTTR.spad" 939748 939765 946492 946497) (-572 "INTTOOLS.spad" 937459 937475 939322 939327) (-571 "INTSLPE.spad" 936765 936773 937449 937454) (-570 "INTRVL.spad" 936331 936341 936679 936760) (-569 "INTRF.spad" 934695 934709 936321 936326) (-568 "INTRET.spad" 934127 934137 934685 934690) (-567 "INTRAT.spad" 932802 932819 934117 934122) (-566 "INTPM.spad" 931165 931181 932445 932450) (-565 "INTPAF.spad" 928933 928951 931097 931102) (-564 "INTPACK.spad" 919243 919251 928923 928928) (-563 "INT.spad" 918604 918612 919097 919238) (-562 "INTHERTR.spad" 917870 917887 918594 918599) (-561 "INTHERAL.spad" 917536 917560 917860 917865) (-560 "INTHEORY.spad" 913949 913957 917526 917531) (-559 "INTG0.spad" 907412 907430 913881 913886) (-558 "INTFTBL.spad" 901441 901449 907402 907407) (-557 "INTFACT.spad" 900500 900510 901431 901436) (-556 "INTEF.spad" 898815 898831 900490 900495) (-555 "INTDOM.spad" 897430 897438 898741 898810) (-554 "INTDOM.spad" 896107 896117 897420 897425) (-553 "INTCAT.spad" 894360 894370 896021 896102) (-552 "INTBIT.spad" 893863 893871 894350 894355) (-551 "INTALG.spad" 893045 893072 893853 893858) (-550 "INTAF.spad" 892537 892553 893035 893040) (-549 "INTABL.spad" 891055 891086 891218 891245) (-548 "INT8.spad" 890935 890943 891045 891050) (-547 "INT32.spad" 890814 890822 890925 890930) (-546 "INT16.spad" 890693 890701 890804 890809) (-545 "INS.spad" 888160 888168 890595 890688) (-544 "INS.spad" 885713 885723 888150 888155) (-543 "INPSIGN.spad" 885147 885160 885703 885708) (-542 "INPRODPF.spad" 884213 884232 885137 885142) (-541 "INPRODFF.spad" 883271 883295 884203 884208) (-540 "INNMFACT.spad" 882242 882259 883261 883266) (-539 "INMODGCD.spad" 881726 881756 882232 882237) (-538 "INFSP.spad" 880011 880033 881716 881721) (-537 "INFPROD0.spad" 879061 879080 880001 880006) (-536 "INFORM.spad" 876222 876230 879051 879056) (-535 "INFORM1.spad" 875847 875857 876212 876217) (-534 "INFINITY.spad" 875399 875407 875837 875842) (-533 "INETCLTS.spad" 875376 875384 875389 875394) (-532 "INEP.spad" 873908 873930 875366 875371) (-531 "INDE.spad" 873637 873654 873898 873903) (-530 "INCRMAPS.spad" 873058 873068 873627 873632) (-529 "INBFILE.spad" 872130 872138 873048 873053) (-528 "INBFF.spad" 867900 867911 872120 872125) (-527 "INBCON.spad" 866188 866196 867890 867895) (-526 "INBCON.spad" 864474 864484 866178 866183) (-525 "INAST.spad" 864139 864147 864464 864469) (-524 "IMPTAST.spad" 863847 863855 864129 864134) (-523 "IMATRIX.spad" 862792 862818 863304 863331) (-522 "IMATQF.spad" 861886 861930 862748 862753) (-521 "IMATLIN.spad" 860491 860515 861842 861847) (-520 "ILIST.spad" 859147 859162 859674 859701) (-519 "IIARRAY2.spad" 858535 858573 858754 858781) (-518 "IFF.spad" 857945 857961 858216 858309) (-517 "IFAST.spad" 857559 857567 857935 857940) (-516 "IFARRAY.spad" 855046 855061 856742 856769) (-515 "IFAMON.spad" 854908 854925 855002 855007) (-514 "IEVALAB.spad" 854297 854309 854898 854903) (-513 "IEVALAB.spad" 853684 853698 854287 854292) (-512 "IDPO.spad" 853482 853494 853674 853679) (-511 "IDPOAMS.spad" 853238 853250 853472 853477) (-510 "IDPOAM.spad" 852958 852970 853228 853233) (-509 "IDPC.spad" 851892 851904 852948 852953) (-508 "IDPAM.spad" 851637 851649 851882 851887) (-507 "IDPAG.spad" 851384 851396 851627 851632) (-506 "IDENT.spad" 851156 851164 851374 851379) (-505 "IDECOMP.spad" 848393 848411 851146 851151) (-504 "IDEAL.spad" 843316 843355 848328 848333) (-503 "ICDEN.spad" 842467 842483 843306 843311) (-502 "ICARD.spad" 841656 841664 842457 842462) (-501 "IBPTOOLS.spad" 840249 840266 841646 841651) (-500 "IBITS.spad" 839448 839461 839885 839912) (-499 "IBATOOL.spad" 836323 836342 839438 839443) (-498 "IBACHIN.spad" 834810 834825 836313 836318) (-497 "IARRAY2.spad" 833798 833824 834417 834444) (-496 "IARRAY1.spad" 832843 832858 832981 833008) (-495 "IAN.spad" 831056 831064 832659 832752) (-494 "IALGFACT.spad" 830657 830690 831046 831051) (-493 "HYPCAT.spad" 830081 830089 830647 830652) (-492 "HYPCAT.spad" 829503 829513 830071 830076) (-491 "HOSTNAME.spad" 829311 829319 829493 829498) (-490 "HOMOTOP.spad" 829054 829064 829301 829306) (-489 "HOAGG.spad" 826322 826332 829044 829049) (-488 "HOAGG.spad" 823365 823377 826089 826094) (-487 "HEXADEC.spad" 821467 821475 821832 821925) (-486 "HEUGCD.spad" 820482 820493 821457 821462) (-485 "HELLFDIV.spad" 820072 820096 820472 820477) (-484 "HEAP.spad" 819464 819474 819679 819706) (-483 "HEADAST.spad" 818995 819003 819454 819459) (-482 "HDP.spad" 808838 808854 809215 809346) (-481 "HDMP.spad" 806014 806029 806632 806759) (-480 "HB.spad" 804251 804259 806004 806009) (-479 "HASHTBL.spad" 802721 802752 802932 802959) (-478 "HASAST.spad" 802437 802445 802711 802716) (-477 "HACKPI.spad" 801920 801928 802339 802432) (-476 "GTSET.spad" 800859 800875 801566 801593) (-475 "GSTBL.spad" 799378 799413 799552 799567) (-474 "GSERIES.spad" 796545 796572 797510 797659) (-473 "GROUP.spad" 795814 795822 796525 796540) (-472 "GROUP.spad" 795091 795101 795804 795809) (-471 "GROEBSOL.spad" 793579 793600 795081 795086) (-470 "GRMOD.spad" 792150 792162 793569 793574) (-469 "GRMOD.spad" 790719 790733 792140 792145) (-468 "GRIMAGE.spad" 783324 783332 790709 790714) (-467 "GRDEF.spad" 781703 781711 783314 783319) (-466 "GRAY.spad" 780162 780170 781693 781698) (-465 "GRALG.spad" 779209 779221 780152 780157) (-464 "GRALG.spad" 778254 778268 779199 779204) (-463 "GPOLSET.spad" 777708 777731 777936 777963) (-462 "GOSPER.spad" 776973 776991 777698 777703) (-461 "GMODPOL.spad" 776111 776138 776941 776968) (-460 "GHENSEL.spad" 775180 775194 776101 776106) (-459 "GENUPS.spad" 771281 771294 775170 775175) (-458 "GENUFACT.spad" 770858 770868 771271 771276) (-457 "GENPGCD.spad" 770442 770459 770848 770853) (-456 "GENMFACT.spad" 769894 769913 770432 770437) (-455 "GENEEZ.spad" 767833 767846 769884 769889) (-454 "GDMP.spad" 764851 764868 765627 765754) (-453 "GCNAALG.spad" 758746 758773 764645 764712) (-452 "GCDDOM.spad" 757918 757926 758672 758741) (-451 "GCDDOM.spad" 757152 757162 757908 757913) (-450 "GB.spad" 754670 754708 757108 757113) (-449 "GBINTERN.spad" 750690 750728 754660 754665) (-448 "GBF.spad" 746447 746485 750680 750685) (-447 "GBEUCLID.spad" 744321 744359 746437 746442) (-446 "GAUSSFAC.spad" 743618 743626 744311 744316) (-445 "GALUTIL.spad" 741940 741950 743574 743579) (-444 "GALPOLYU.spad" 740386 740399 741930 741935) (-443 "GALFACTU.spad" 738551 738570 740376 740381) (-442 "GALFACT.spad" 728684 728695 738541 738546) (-441 "FVFUN.spad" 725707 725715 728674 728679) (-440 "FVC.spad" 724759 724767 725697 725702) (-439 "FUNDESC.spad" 724437 724445 724749 724754) (-438 "FUNCTION.spad" 724286 724298 724427 724432) (-437 "FT.spad" 722579 722587 724276 724281) (-436 "FTEM.spad" 721742 721750 722569 722574) (-435 "FSUPFACT.spad" 720642 720661 721678 721683) (-434 "FST.spad" 718728 718736 720632 720637) (-433 "FSRED.spad" 718206 718222 718718 718723) (-432 "FSPRMELT.spad" 717030 717046 718163 718168) (-431 "FSPECF.spad" 715107 715123 717020 717025) (-430 "FS.spad" 709169 709179 714882 715102) (-429 "FS.spad" 703009 703021 708724 708729) (-428 "FSINT.spad" 702667 702683 702999 703004) (-427 "FSERIES.spad" 701854 701866 702487 702586) (-426 "FSCINT.spad" 701167 701183 701844 701849) (-425 "FSAGG.spad" 700284 700294 701123 701162) (-424 "FSAGG.spad" 699363 699375 700204 700209) (-423 "FSAGG2.spad" 698062 698078 699353 699358) (-422 "FS2UPS.spad" 692545 692579 698052 698057) (-421 "FS2.spad" 692190 692206 692535 692540) (-420 "FS2EXPXP.spad" 691313 691336 692180 692185) (-419 "FRUTIL.spad" 690255 690265 691303 691308) (-418 "FR.spad" 683949 683959 689279 689348) (-417 "FRNAALG.spad" 679036 679046 683891 683944) (-416 "FRNAALG.spad" 674135 674147 678992 678997) (-415 "FRNAAF2.spad" 673589 673607 674125 674130) (-414 "FRMOD.spad" 672983 673013 673520 673525) (-413 "FRIDEAL.spad" 672178 672199 672963 672978) (-412 "FRIDEAL2.spad" 671780 671812 672168 672173) (-411 "FRETRCT.spad" 671291 671301 671770 671775) (-410 "FRETRCT.spad" 670668 670680 671149 671154) (-409 "FRAMALG.spad" 668996 669009 670624 670663) (-408 "FRAMALG.spad" 667356 667371 668986 668991) (-407 "FRAC.spad" 664455 664465 664858 665031) (-406 "FRAC2.spad" 664058 664070 664445 664450) (-405 "FR2.spad" 663392 663404 664048 664053) (-404 "FPS.spad" 660201 660209 663282 663387) (-403 "FPS.spad" 657038 657048 660121 660126) (-402 "FPC.spad" 656080 656088 656940 657033) (-401 "FPC.spad" 655208 655218 656070 656075) (-400 "FPATMAB.spad" 654970 654980 655198 655203) (-399 "FPARFRAC.spad" 653443 653460 654960 654965) (-398 "FORTRAN.spad" 651949 651992 653433 653438) (-397 "FORT.spad" 650878 650886 651939 651944) (-396 "FORTFN.spad" 648048 648056 650868 650873) (-395 "FORTCAT.spad" 647732 647740 648038 648043) (-394 "FORMULA.spad" 645196 645204 647722 647727) (-393 "FORMULA1.spad" 644675 644685 645186 645191) (-392 "FORDER.spad" 644366 644390 644665 644670) (-391 "FOP.spad" 643567 643575 644356 644361) (-390 "FNLA.spad" 642991 643013 643535 643562) (-389 "FNCAT.spad" 641578 641586 642981 642986) (-388 "FNAME.spad" 641470 641478 641568 641573) (-387 "FMTC.spad" 641268 641276 641396 641465) (-386 "FMONOID.spad" 638323 638333 641224 641229) (-385 "FM.spad" 638018 638030 638257 638284) (-384 "FMFUN.spad" 635048 635056 638008 638013) (-383 "FMC.spad" 634100 634108 635038 635043) (-382 "FMCAT.spad" 631754 631772 634068 634095) (-381 "FM1.spad" 631111 631123 631688 631715) (-380 "FLOATRP.spad" 628832 628846 631101 631106) (-379 "FLOAT.spad" 622120 622128 628698 628827) (-378 "FLOATCP.spad" 619537 619551 622110 622115) (-377 "FLINEXP.spad" 619249 619259 619517 619532) (-376 "FLINEXP.spad" 618915 618927 619185 619190) (-375 "FLASORT.spad" 618235 618247 618905 618910) (-374 "FLALG.spad" 615881 615900 618161 618230) (-373 "FLAGG.spad" 612899 612909 615861 615876) (-372 "FLAGG.spad" 609818 609830 612782 612787) (-371 "FLAGG2.spad" 608499 608515 609808 609813) (-370 "FINRALG.spad" 606528 606541 608455 608494) (-369 "FINRALG.spad" 604483 604498 606412 606417) (-368 "FINITE.spad" 603635 603643 604473 604478) (-367 "FINAALG.spad" 592616 592626 603577 603630) (-366 "FINAALG.spad" 581609 581621 592572 592577) (-365 "FILE.spad" 581192 581202 581599 581604) (-364 "FILECAT.spad" 579710 579727 581182 581187) (-363 "FIELD.spad" 579116 579124 579612 579705) (-362 "FIELD.spad" 578608 578618 579106 579111) (-361 "FGROUP.spad" 577217 577227 578588 578603) (-360 "FGLMICPK.spad" 576004 576019 577207 577212) (-359 "FFX.spad" 575379 575394 575720 575813) (-358 "FFSLPE.spad" 574868 574889 575369 575374) (-357 "FFPOLY.spad" 566120 566131 574858 574863) (-356 "FFPOLY2.spad" 565180 565197 566110 566115) (-355 "FFP.spad" 564577 564597 564896 564989) (-354 "FF.spad" 564025 564041 564258 564351) (-353 "FFNBX.spad" 562537 562557 563741 563834) (-352 "FFNBP.spad" 561050 561067 562253 562346) (-351 "FFNB.spad" 559515 559536 560731 560824) (-350 "FFINTBAS.spad" 556929 556948 559505 559510) (-349 "FFIELDC.spad" 554504 554512 556831 556924) (-348 "FFIELDC.spad" 552165 552175 554494 554499) (-347 "FFHOM.spad" 550913 550930 552155 552160) (-346 "FFF.spad" 548348 548359 550903 550908) (-345 "FFCGX.spad" 547195 547215 548064 548157) (-344 "FFCGP.spad" 546084 546104 546911 547004) (-343 "FFCG.spad" 544876 544897 545765 545858) (-342 "FFCAT.spad" 537903 537925 544715 544871) (-341 "FFCAT.spad" 531009 531033 537823 537828) (-340 "FFCAT2.spad" 530754 530794 530999 531004) (-339 "FEXPR.spad" 522463 522509 530510 530549) (-338 "FEVALAB.spad" 522169 522179 522453 522458) (-337 "FEVALAB.spad" 521660 521672 521946 521951) (-336 "FDIV.spad" 521102 521126 521650 521655) (-335 "FDIVCAT.spad" 519144 519168 521092 521097) (-334 "FDIVCAT.spad" 517184 517210 519134 519139) (-333 "FDIV2.spad" 516838 516878 517174 517179) (-332 "FCPAK1.spad" 515391 515399 516828 516833) (-331 "FCOMP.spad" 514770 514780 515381 515386) (-330 "FC.spad" 504685 504693 514760 514765) (-329 "FAXF.spad" 497620 497634 504587 504680) (-328 "FAXF.spad" 490607 490623 497576 497581) (-327 "FARRAY.spad" 488753 488763 489790 489817) (-326 "FAMR.spad" 486873 486885 488651 488748) (-325 "FAMR.spad" 484977 484991 486757 486762) (-324 "FAMONOID.spad" 484627 484637 484931 484936) (-323 "FAMONC.spad" 482849 482861 484617 484622) (-322 "FAGROUP.spad" 482455 482465 482745 482772) (-321 "FACUTIL.spad" 480651 480668 482445 482450) (-320 "FACTFUNC.spad" 479827 479837 480641 480646) (-319 "EXPUPXS.spad" 476660 476683 477959 478108) (-318 "EXPRTUBE.spad" 473888 473896 476650 476655) (-317 "EXPRODE.spad" 470760 470776 473878 473883) (-316 "EXPR.spad" 466035 466045 466749 467156) (-315 "EXPR2UPS.spad" 462127 462140 466025 466030) (-314 "EXPR2.spad" 461830 461842 462117 462122) (-313 "EXPEXPAN.spad" 458768 458793 459402 459495) (-312 "EXIT.spad" 458439 458447 458758 458763) (-311 "EXITAST.spad" 458175 458183 458429 458434) (-310 "EVALCYC.spad" 457633 457647 458165 458170) (-309 "EVALAB.spad" 457197 457207 457623 457628) (-308 "EVALAB.spad" 456759 456771 457187 457192) (-307 "EUCDOM.spad" 454301 454309 456685 456754) (-306 "EUCDOM.spad" 451905 451915 454291 454296) (-305 "ESTOOLS.spad" 443745 443753 451895 451900) (-304 "ESTOOLS2.spad" 443346 443360 443735 443740) (-303 "ESTOOLS1.spad" 443031 443042 443336 443341) (-302 "ES.spad" 435578 435586 443021 443026) (-301 "ES.spad" 428031 428041 435476 435481) (-300 "ESCONT.spad" 424804 424812 428021 428026) (-299 "ESCONT1.spad" 424553 424565 424794 424799) (-298 "ES2.spad" 424048 424064 424543 424548) (-297 "ES1.spad" 423614 423630 424038 424043) (-296 "ERROR.spad" 420935 420943 423604 423609) (-295 "EQTBL.spad" 419407 419429 419616 419643) (-294 "EQ.spad" 414281 414291 417080 417192) (-293 "EQ2.spad" 413997 414009 414271 414276) (-292 "EP.spad" 410311 410321 413987 413992) (-291 "ENV.spad" 409013 409021 410301 410306) (-290 "ENTIRER.spad" 408681 408689 408957 409008) (-289 "EMR.spad" 407882 407923 408607 408676) (-288 "ELTAGG.spad" 406122 406141 407872 407877) (-287 "ELTAGG.spad" 404326 404347 406078 406083) (-286 "ELTAB.spad" 403773 403791 404316 404321) (-285 "ELFUTS.spad" 403152 403171 403763 403768) (-284 "ELEMFUN.spad" 402841 402849 403142 403147) (-283 "ELEMFUN.spad" 402528 402538 402831 402836) (-282 "ELAGG.spad" 400471 400481 402508 402523) (-281 "ELAGG.spad" 398351 398363 400390 400395) (-280 "ELABEXPR.spad" 397282 397290 398341 398346) (-279 "EFUPXS.spad" 394058 394088 397238 397243) (-278 "EFULS.spad" 390894 390917 394014 394019) (-277 "EFSTRUC.spad" 388849 388865 390884 390889) (-276 "EF.spad" 383615 383631 388839 388844) (-275 "EAB.spad" 381891 381899 383605 383610) (-274 "E04UCFA.spad" 381427 381435 381881 381886) (-273 "E04NAFA.spad" 381004 381012 381417 381422) (-272 "E04MBFA.spad" 380584 380592 380994 380999) (-271 "E04JAFA.spad" 380120 380128 380574 380579) (-270 "E04GCFA.spad" 379656 379664 380110 380115) (-269 "E04FDFA.spad" 379192 379200 379646 379651) (-268 "E04DGFA.spad" 378728 378736 379182 379187) (-267 "E04AGNT.spad" 374570 374578 378718 378723) (-266 "DVARCAT.spad" 371255 371265 374560 374565) (-265 "DVARCAT.spad" 367938 367950 371245 371250) (-264 "DSMP.spad" 365369 365383 365674 365801) (-263 "DROPT.spad" 359314 359322 365359 365364) (-262 "DROPT1.spad" 358977 358987 359304 359309) (-261 "DROPT0.spad" 353804 353812 358967 358972) (-260 "DRAWPT.spad" 351959 351967 353794 353799) (-259 "DRAW.spad" 344559 344572 351949 351954) (-258 "DRAWHACK.spad" 343867 343877 344549 344554) (-257 "DRAWCX.spad" 341309 341317 343857 343862) (-256 "DRAWCURV.spad" 340846 340861 341299 341304) (-255 "DRAWCFUN.spad" 330018 330026 340836 340841) (-254 "DQAGG.spad" 328186 328196 329986 330013) (-253 "DPOLCAT.spad" 323527 323543 328054 328181) (-252 "DPOLCAT.spad" 318954 318972 323483 323488) (-251 "DPMO.spad" 311180 311196 311318 311619) (-250 "DPMM.spad" 303419 303437 303544 303845) (-249 "DOMCTOR.spad" 303311 303319 303409 303414) (-248 "DOMAIN.spad" 302442 302450 303301 303306) (-247 "DMP.spad" 299664 299679 300236 300363) (-246 "DLP.spad" 299012 299022 299654 299659) (-245 "DLIST.spad" 297591 297601 298195 298222) (-244 "DLAGG.spad" 296002 296012 297581 297586) (-243 "DIVRING.spad" 295544 295552 295946 295997) (-242 "DIVRING.spad" 295130 295140 295534 295539) (-241 "DISPLAY.spad" 293310 293318 295120 295125) (-240 "DIRPROD.spad" 282890 282906 283530 283661) (-239 "DIRPROD2.spad" 281698 281716 282880 282885) (-238 "DIRPCAT.spad" 280640 280656 281562 281693) (-237 "DIRPCAT.spad" 279311 279329 280235 280240) (-236 "DIOSP.spad" 278136 278144 279301 279306) (-235 "DIOPS.spad" 277120 277130 278116 278131) (-234 "DIOPS.spad" 276078 276090 277076 277081) (-233 "DIFRING.spad" 275370 275378 276058 276073) (-232 "DIFRING.spad" 274670 274680 275360 275365) (-231 "DIFEXT.spad" 273829 273839 274650 274665) (-230 "DIFEXT.spad" 272905 272917 273728 273733) (-229 "DIAGG.spad" 272535 272545 272885 272900) (-228 "DIAGG.spad" 272173 272185 272525 272530) (-227 "DHMATRIX.spad" 270477 270487 271630 271657) (-226 "DFSFUN.spad" 263885 263893 270467 270472) (-225 "DFLOAT.spad" 260606 260614 263775 263880) (-224 "DFINTTLS.spad" 258815 258831 260596 260601) (-223 "DERHAM.spad" 256725 256757 258795 258810) (-222 "DEQUEUE.spad" 256043 256053 256332 256359) (-221 "DEGRED.spad" 255658 255672 256033 256038) (-220 "DEFINTRF.spad" 253183 253193 255648 255653) (-219 "DEFINTEF.spad" 251679 251695 253173 253178) (-218 "DEFAST.spad" 251047 251055 251669 251674) (-217 "DECIMAL.spad" 249153 249161 249514 249607) (-216 "DDFACT.spad" 246952 246969 249143 249148) (-215 "DBLRESP.spad" 246550 246574 246942 246947) (-214 "DBASE.spad" 245204 245214 246540 246545) (-213 "DATAARY.spad" 244666 244679 245194 245199) (-212 "D03FAFA.spad" 244494 244502 244656 244661) (-211 "D03EEFA.spad" 244314 244322 244484 244489) (-210 "D03AGNT.spad" 243394 243402 244304 244309) (-209 "D02EJFA.spad" 242856 242864 243384 243389) (-208 "D02CJFA.spad" 242334 242342 242846 242851) (-207 "D02BHFA.spad" 241824 241832 242324 242329) (-206 "D02BBFA.spad" 241314 241322 241814 241819) (-205 "D02AGNT.spad" 236118 236126 241304 241309) (-204 "D01WGTS.spad" 234437 234445 236108 236113) (-203 "D01TRNS.spad" 234414 234422 234427 234432) (-202 "D01GBFA.spad" 233936 233944 234404 234409) (-201 "D01FCFA.spad" 233458 233466 233926 233931) (-200 "D01ASFA.spad" 232926 232934 233448 233453) (-199 "D01AQFA.spad" 232372 232380 232916 232921) (-198 "D01APFA.spad" 231796 231804 232362 232367) (-197 "D01ANFA.spad" 231290 231298 231786 231791) (-196 "D01AMFA.spad" 230800 230808 231280 231285) (-195 "D01ALFA.spad" 230340 230348 230790 230795) (-194 "D01AKFA.spad" 229866 229874 230330 230335) (-193 "D01AJFA.spad" 229389 229397 229856 229861) (-192 "D01AGNT.spad" 225448 225456 229379 229384) (-191 "CYCLOTOM.spad" 224954 224962 225438 225443) (-190 "CYCLES.spad" 221786 221794 224944 224949) (-189 "CVMP.spad" 221203 221213 221776 221781) (-188 "CTRIGMNP.spad" 219693 219709 221193 221198) (-187 "CTOR.spad" 219388 219396 219683 219688) (-186 "CTORKIND.spad" 218991 218999 219378 219383) (-185 "CTORCAT.spad" 218240 218248 218981 218986) (-184 "CTORCAT.spad" 217487 217497 218230 218235) (-183 "CTORCALL.spad" 217067 217075 217477 217482) (-182 "CSTTOOLS.spad" 216310 216323 217057 217062) (-181 "CRFP.spad" 210014 210027 216300 216305) (-180 "CRCEAST.spad" 209734 209742 210004 210009) (-179 "CRAPACK.spad" 208777 208787 209724 209729) (-178 "CPMATCH.spad" 208277 208292 208702 208707) (-177 "CPIMA.spad" 207982 208001 208267 208272) (-176 "COORDSYS.spad" 202875 202885 207972 207977) (-175 "CONTOUR.spad" 202277 202285 202865 202870) (-174 "CONTFRAC.spad" 197889 197899 202179 202272) (-173 "CONDUIT.spad" 197647 197655 197879 197884) (-172 "COMRING.spad" 197321 197329 197585 197642) (-171 "COMPPROP.spad" 196835 196843 197311 197316) (-170 "COMPLPAT.spad" 196602 196617 196825 196830) (-169 "COMPLEX.spad" 190626 190636 190870 191131) (-168 "COMPLEX2.spad" 190339 190351 190616 190621) (-167 "COMPFACT.spad" 189941 189955 190329 190334) (-166 "COMPCAT.spad" 188009 188019 189675 189936) (-165 "COMPCAT.spad" 185770 185782 187438 187443) (-164 "COMMUPC.spad" 185516 185534 185760 185765) (-163 "COMMONOP.spad" 185049 185057 185506 185511) (-162 "COMM.spad" 184858 184866 185039 185044) (-161 "COMMAAST.spad" 184621 184629 184848 184853) (-160 "COMBOPC.spad" 183526 183534 184611 184616) (-159 "COMBINAT.spad" 182271 182281 183516 183521) (-158 "COMBF.spad" 179639 179655 182261 182266) (-157 "COLOR.spad" 178476 178484 179629 179634) (-156 "COLONAST.spad" 178142 178150 178466 178471) (-155 "CMPLXRT.spad" 177851 177868 178132 178137) (-154 "CLLCTAST.spad" 177513 177521 177841 177846) (-153 "CLIP.spad" 173605 173613 177503 177508) (-152 "CLIF.spad" 172244 172260 173561 173600) (-151 "CLAGG.spad" 168729 168739 172234 172239) (-150 "CLAGG.spad" 165085 165097 168592 168597) (-149 "CINTSLPE.spad" 164410 164423 165075 165080) (-148 "CHVAR.spad" 162488 162510 164400 164405) (-147 "CHARZ.spad" 162403 162411 162468 162483) (-146 "CHARPOL.spad" 161911 161921 162393 162398) (-145 "CHARNZ.spad" 161664 161672 161891 161906) (-144 "CHAR.spad" 159532 159540 161654 161659) (-143 "CFCAT.spad" 158848 158856 159522 159527) (-142 "CDEN.spad" 158006 158020 158838 158843) (-141 "CCLASS.spad" 156155 156163 157417 157456) (-140 "CATEGORY.spad" 155245 155253 156145 156150) (-139 "CATCTOR.spad" 155136 155144 155235 155240) (-138 "CATAST.spad" 154763 154771 155126 155131) (-137 "CASEAST.spad" 154477 154485 154753 154758) (-136 "CARTEN.spad" 149580 149604 154467 154472) (-135 "CARTEN2.spad" 148966 148993 149570 149575) (-134 "CARD.spad" 146255 146263 148940 148961) (-133 "CAPSLAST.spad" 146029 146037 146245 146250) (-132 "CACHSET.spad" 145651 145659 146019 146024) (-131 "CABMON.spad" 145204 145212 145641 145646) (-130 "BYTEORD.spad" 144879 144887 145194 145199) (-129 "BYTE.spad" 144300 144308 144869 144874) (-128 "BYTEBUF.spad" 142157 142165 143469 143496) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file