aboutsummaryrefslogtreecommitdiff
path: root/src/input/tutchap3.input.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/input/tutchap3.input.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/input/tutchap3.input.pamphlet')
-rw-r--r--src/input/tutchap3.input.pamphlet103
1 files changed, 103 insertions, 0 deletions
diff --git a/src/input/tutchap3.input.pamphlet b/src/input/tutchap3.input.pamphlet
new file mode 100644
index 00000000..7ddc0bff
--- /dev/null
+++ b/src/input/tutchap3.input.pamphlet
@@ -0,0 +1,103 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input tutChap3.input}
+\author{The Axiom Team}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{License}
+<<license>>=
+--Copyright The Numerical Algorithms Group Limited 1996.
+@
+<<*>>=
+<<license>>
+D(x^2,x)
+D(sin x,x)
+D(sin(log(x/tan(x))),x)
+D(tan x,x,2)
+D(tan x,x,3)
+D(sin(x*y),x)
+D(sin(x*y),[y,x,x])
+dalembert := operator _[_]
+dalembert u
+J0 := operator script(J,[[0]]::List List OutputForm)
+symbol[sub1,sub2]
+f := operator 'f; g := operator 'g;
+D(f(x)*g(x),x)
+D(f(x)/g(x),x)
+D(f(g(x)),x)
+r := operator 'r; theta := operator 'theta ;
+x(t) == r(t)*cos theta t
+y(t) == r(t)*sin theta t
+D(x(t),t)
+D(y(t),t)
+)clear all
+r := operator 'r; theta := operator 'theta;
+r := r(t); theta := theta(t);
+x == r*cos theta; y == r*sin theta;
+ax := D(x,t,2); ay := D(y,t,2);
+eval(ax,theta=0)
+eval(ay,theta=0)
+f := operator 'f
+D(f(r,theta),t)
+D(f(r,theta),t,2)
+)clear p x -- since x has a value
+integrate(x^2,x)
+integrate(%e^x,x)
+integrate(1/x,x)
+integrate(sin x,x)
+I ==> integrate
+I(x^3,x)
+I(sin sin x,x)
+I(x^n,x)
+% - 1/(n + 1)
+limit(%,n=-1)
+In := %% 17
+limit(%,n=-1)
+)set stream calculate 5
+series(In,n=-1) -- expand In in powers of (n+1)
+In2 := In - x*%e^(-log(x))*(n+1)^(-1)
+limit(In2,n=-1)
+limit(x^(n+1)/(n+1),n=-1)
+limit(x^(n+1)/(n+1)-1/(n+1),n=-1)
+I(1/(a+x^2),x)
+series(second %, a=0)
+second %% 27
+(rule atan A == acot(1/A)) %
+I(atan x - acot(1/x),x)
+atanRule := rule atan(A) == acot(1/A)
+atanRule atan x
+rSimp := rule(sqrt(x^(2*(n|even? n))) == x^n)
+rSimp(sqrt(x^4))
+rSimp(sqrt(x^6))
+f := operator 'f; g := operator 'g; dprod := D(f(x)*g(x),x)
+(rule f x == sin x)%
+(rule g x == exp x)%
+(rule (f x == sin x; g x == cos x))dprod
+substitutions := (rule (f x == sec x; g x == csc x))
+substitutions dprod
+I(cot x, x)
+normalize %
+simplify %
+(rule N*log A + M*log B == log(A^N*B^M)) %
+(rule log(A^N) == N*log A)%
+ii:=I(1/(x^3 + x + 1),x)
+T0:= (tower ii).2 ::EXPR INT
+f:=definingPolynomial T0
+outputGeneral 5
+solve((numerator f) :: POLY INT,0.00001)
+eval(ii :: EXPR COMPLEX FLOAT,T0= rhs first %)
+solve((numerator f) :: POLY INT,1/100000)
+eval(ii,T0=rhs first %) :: EXPR Complex Integer
+complexForm %
+% :: EXPR Float
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}