diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/input/rules.input.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/input/rules.input.pamphlet')
-rw-r--r-- | src/input/rules.input.pamphlet | 66 |
1 files changed, 66 insertions, 0 deletions
diff --git a/src/input/rules.input.pamphlet b/src/input/rules.input.pamphlet new file mode 100644 index 00000000..ab7e6981 --- /dev/null +++ b/src/input/rules.input.pamphlet @@ -0,0 +1,66 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/input rules.input} +\author{The Axiom Team} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{License} +<<license>>= +--Copyright The Numerical Algorithms Group Limited 1991. +@ +<<*>>= +<<license>> + +)clear all +-- first a single rule +logrule := rule log(x) + log(y) == log(x * y) +f := log sin x + log x +logrule f + +-- now a pile of several rules +logrules := rule + log(x) + log(y) == log(x * y) + y * log x == log(x ** y) +f := a * log(sin x) - 2 * log x +logrules f + +-- example of a predicate attached to a pattern variable +logrules2 := rule + log(x) + log(y) == log(x * y) + (y | integer? y) * log x == log(x ** y) +logrules2 f + +-- rules for linearizing sines and cosines +trigLinearize := rule + sin(x) * sin(y) == cos(x-y)/2 - cos(x+y)/2 + cos(x) * cos(y) == cos(x+y)/2 + cos(x-y)/2 + sin(x) * cos(y) == sin(x+y)/2 + sin(x-y)/2 + sin(x) ** (n | integer? n and n > 1) == (1-cos(2*x))/2 * sin(x)**(n-2) + cos(x) ** (n | integer? n and n > 1) == (1+cos(2*x))/2 * cos(x)**(n-2) +g := sin(a)*cos(b) + sin(a)*cos(a) + cos(2*a)*cos(3*a) +trigLinearize g + +-- here we show the use of ? to indicate an 'optional' pattern variables +eirule := rule integral((?y + exp x)/x,x) == integral(y/x,x) + Ei x +eirule integral(exp u/u, u) +eirule integral(sin u + exp u/u, u) + +-- here we show the use of : to indicate a 'multiple' pattern variables +u := operator u +v := operator v +myrule := rule u(x + y) == u x + v y +h := u(a + b + c + d) +myrule h +myrule2 := rule u(:x + y) == u x + v y +myrule2 h +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |