aboutsummaryrefslogtreecommitdiff
path: root/src/input/lodesys.input.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/input/lodesys.input.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/input/lodesys.input.pamphlet')
-rw-r--r--src/input/lodesys.input.pamphlet57
1 files changed, 57 insertions, 0 deletions
diff --git a/src/input/lodesys.input.pamphlet b/src/input/lodesys.input.pamphlet
new file mode 100644
index 00000000..8feaf0b4
--- /dev/null
+++ b/src/input/lodesys.input.pamphlet
@@ -0,0 +1,57 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input lodesys.input}
+\author{The Axiom Team}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{License}
+<<license>>=
+--Copyright The Numerical Algorithms Group Limited 1994.
+@
+<<*>>=
+<<license>>
+)cl all
+-- There are 2 different ways to input a homogeneous 1st order system of
+-- linear ordinary differential equations of the form dy/dt = M y
+-- where y is a vector of unknown functions of t.
+-- the first is simply solve(M, t) which will be understood to be
+-- a differential system:
+M := matrix [[ 1+4*t, -5*t, 7*t, -8*t, 8*t, -6*t],_
+ [ -10*t, 1+9*t, -14*t, 16*t, -16*t, 12*t],_
+ [ -5*t, 5*t, 1-8*t, 8*t, -8*t, 6*t],_
+ [ 10*t, -10*t, 14*t,1-17*t, 16*t, -12*t],_
+ [ 5*t, -5*t, 7*t, -8*t, 1+7*t, -6*t],_
+ [ -5*t, 5*t, -7*t, 8*t, -8*t, 1+5*t]]
+-- the original system in Barkatou's AAECC paper is t^2 dy/dt = M*y
+sol := solve(inv(t**2) * M, t)
+-- verify the solutions
+[t**2 * map(h +-> D(h, t), v) - M * v for v in sol]
+-- the second way is to type each equation using a separate operator for
+-- each unknown:
+x := operator x
+y := operator y
+sys := [D(x t, t) = x t + sqrt 3 * y t, D(y t, t) = sqrt 3 * x t - y t]
+solve(sys, [x, y], t).basis
+-- Similarly there are 2 different ways to input the inhomogeneous system
+-- dy/dt = M y + v where v is a given vector of functions.
+-- the first is solve(M, v, t):
+v := vector [1, (-29*t + 19)/5, -1, t + 1, - 2*t + 3, -1]
+-- get a particular solution to t^2 dy/dt = M y + v
+solp := solve(inv(t**2) * M, inv(t**2) * v, t).particular
+-- verify the particular solution
+t**2 * map(h +-> D(h, t), solp) - M * solp - v
+-- the second way is by listing the equations:
+z := operator z
+sys := [D(x t, t) = y t + z t + t, D(y t, t) = x t + z t, D(z t, t) = x t + y t]
+solve(sys, [x, y, z], t).particular
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}