aboutsummaryrefslogtreecommitdiff
path: root/src/input/easter.input.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-05-27 22:31:23 +0000
committerdos-reis <gdr@axiomatics.org>2010-05-27 22:31:23 +0000
commit307e4ad0a2676ef94b42121e79e71888f4778883 (patch)
tree15cc67e1c57f7b0efd639bd14472bf3e559c08e3 /src/input/easter.input.pamphlet
parent8f5399e77de0741651b0d058b1aa7f57f43aedb0 (diff)
downloadopen-axiom-307e4ad0a2676ef94b42121e79e71888f4778883.tar.gz
cleanup
Diffstat (limited to 'src/input/easter.input.pamphlet')
-rw-r--r--src/input/easter.input.pamphlet26
1 files changed, 13 insertions, 13 deletions
diff --git a/src/input/easter.input.pamphlet b/src/input/easter.input.pamphlet
index 7de1aee3..f8b9dcbc 100644
--- a/src/input/easter.input.pamphlet
+++ b/src/input/easter.input.pamphlet
@@ -30,10 +30,10 @@ factor(%)
-- Infinite precision rational numbers
1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10
-- Arbitrary precision floating point numbers
-digits(50);
+digits(50)
-- This number is nearly an integer
exp(sqrt(163.)*%pi)
-digits(20);
+digits(20)
-- Special functions
besselJ(2, 1 + %i)
-- Complete decimal expansion of a rational number
@@ -65,7 +65,7 @@ factor(%)
-- Factor polynomials over finite fields and field extensions
p:= x**4 - 3*x**2 + 1
factor(p)
-phi:= rootOf(phi**2 - phi - 1);
+phi:= rootOf(phi**2 - phi - 1)
factor(p, [phi])
factor(p :: Polynomial(PrimeField(5)))
expand(%)
@@ -88,7 +88,7 @@ sincosAngles:= rule _
sin((n | integer?(n)) * x) == _
sin((n - 1)*x) * cos(x) + cos((n - 1)*x) * sin(x) )
sincosAngles r
-r:= 'r;
+r:= 'r
-- ---------- Determining Zero Equivalence ----------
-- The following expressions are all equal to zero
sqrt(997) - (997**3)**(1/6)
@@ -190,7 +190,7 @@ m:= matrix([[ 5, -3, -7], _
[ 2, -3, -4]])
characteristicPolynomial(m, lambda)
solve(% = 0, lambda)
-m:= 'm;
+m:= 'm
-- ---------- Tensors ----------
-- ---------- Sums and Products ----------
-- Sums: finite and infinite
@@ -205,8 +205,8 @@ limit((1 + 1/n)**n, n = %plusInfinity)
limit((1 - cos(x))/x**2, x = 0)
-- Apply the chain rule---this is important for PDEs and many other
-- applications
-y:= operator('y);
-x:= operator('x);
+y:= operator('y)
+x:= operator('x)
D(y(x(t)), t, 2)
)clear properties x y
-- ---------- Indefinite Integrals ----------
@@ -277,7 +277,7 @@ exp(-x)*sin(x)
series(%, x = 0)
-- Derive an explicit Taylor series solution of y as a function of x from the
-- following implicit relation
-y:= operator('y);
+y:= operator('y)
x = sin(y(x)) + cos(y(x))
seriesSolve(%, y, x = 1, 0)
)clear properties y
@@ -289,19 +289,19 @@ laplace(cos((w - 1)*t), t, s)
inverseLaplace(%, s, t)
-- ---------- Difference and Differential Equations ----------
-- Second order linear recurrence equation
-r:= operator('r);
+r:= operator('r)
r(n + 2) - 2 * r(n + 1) + r(n) = 2
[%, r(0) = 1, r(1) = m]
)clear properties r
-- Second order ODE with initial conditions---solve first using Laplace
-- transforms
-f:= operator('f);
+f:= operator('f)
ode:= D(f(t), t, 2) + 4*f(t) = sin(2*t)
map(e +-> laplace(e, t, s), %)
-- Now, solve the ODE directly
solve(ode, f, t = 0, [0, 0])
-- First order linear ODE
-y:= operator('y);
+y:= operator('y)
x**2 * D(y(x), x) + 3*x*y(x) = sin(x)/x
solve(%, y, x)
-- Nonlinear ODE
@@ -309,13 +309,13 @@ D(y(x), x, 2) + y(x)*D(y(x), x)**3 = 0
solve(%, y, x)
-- A simple parametric ODE
D(y(x, a), x) = a*y(x, a)
-solve(%, y, x);
+solve(%, y, x)
-- ODE with boundary conditions. This problem has nontrivial solutions
-- y(x) = A sin([pi/2 + n pi] x) for n an arbitrary integer.
solve(D(y(x), x, 2) + k**2*y(x) = 0, y, x)
-- bc(%, x = 0, y = 0, x = 1, D(y(x), x) = 0)
-- System of two linear, constant coefficient ODEs
-x:= operator('x);
+x:= operator('x)
system:= [D(x(t), t) = x(t) - y(t), D(y(t), t) = x(t) + y(t)]
-- Check the answer
-- Triangular system of two ODEs