diff options
author | dos-reis <gdr@axiomatics.org> | 2010-05-27 22:31:23 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2010-05-27 22:31:23 +0000 |
commit | 307e4ad0a2676ef94b42121e79e71888f4778883 (patch) | |
tree | 15cc67e1c57f7b0efd639bd14472bf3e559c08e3 /src/input/easter.input.pamphlet | |
parent | 8f5399e77de0741651b0d058b1aa7f57f43aedb0 (diff) | |
download | open-axiom-307e4ad0a2676ef94b42121e79e71888f4778883.tar.gz |
cleanup
Diffstat (limited to 'src/input/easter.input.pamphlet')
-rw-r--r-- | src/input/easter.input.pamphlet | 26 |
1 files changed, 13 insertions, 13 deletions
diff --git a/src/input/easter.input.pamphlet b/src/input/easter.input.pamphlet index 7de1aee3..f8b9dcbc 100644 --- a/src/input/easter.input.pamphlet +++ b/src/input/easter.input.pamphlet @@ -30,10 +30,10 @@ factor(%) -- Infinite precision rational numbers 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 + 1/10 -- Arbitrary precision floating point numbers -digits(50); +digits(50) -- This number is nearly an integer exp(sqrt(163.)*%pi) -digits(20); +digits(20) -- Special functions besselJ(2, 1 + %i) -- Complete decimal expansion of a rational number @@ -65,7 +65,7 @@ factor(%) -- Factor polynomials over finite fields and field extensions p:= x**4 - 3*x**2 + 1 factor(p) -phi:= rootOf(phi**2 - phi - 1); +phi:= rootOf(phi**2 - phi - 1) factor(p, [phi]) factor(p :: Polynomial(PrimeField(5))) expand(%) @@ -88,7 +88,7 @@ sincosAngles:= rule _ sin((n | integer?(n)) * x) == _ sin((n - 1)*x) * cos(x) + cos((n - 1)*x) * sin(x) ) sincosAngles r -r:= 'r; +r:= 'r -- ---------- Determining Zero Equivalence ---------- -- The following expressions are all equal to zero sqrt(997) - (997**3)**(1/6) @@ -190,7 +190,7 @@ m:= matrix([[ 5, -3, -7], _ [ 2, -3, -4]]) characteristicPolynomial(m, lambda) solve(% = 0, lambda) -m:= 'm; +m:= 'm -- ---------- Tensors ---------- -- ---------- Sums and Products ---------- -- Sums: finite and infinite @@ -205,8 +205,8 @@ limit((1 + 1/n)**n, n = %plusInfinity) limit((1 - cos(x))/x**2, x = 0) -- Apply the chain rule---this is important for PDEs and many other -- applications -y:= operator('y); -x:= operator('x); +y:= operator('y) +x:= operator('x) D(y(x(t)), t, 2) )clear properties x y -- ---------- Indefinite Integrals ---------- @@ -277,7 +277,7 @@ exp(-x)*sin(x) series(%, x = 0) -- Derive an explicit Taylor series solution of y as a function of x from the -- following implicit relation -y:= operator('y); +y:= operator('y) x = sin(y(x)) + cos(y(x)) seriesSolve(%, y, x = 1, 0) )clear properties y @@ -289,19 +289,19 @@ laplace(cos((w - 1)*t), t, s) inverseLaplace(%, s, t) -- ---------- Difference and Differential Equations ---------- -- Second order linear recurrence equation -r:= operator('r); +r:= operator('r) r(n + 2) - 2 * r(n + 1) + r(n) = 2 [%, r(0) = 1, r(1) = m] )clear properties r -- Second order ODE with initial conditions---solve first using Laplace -- transforms -f:= operator('f); +f:= operator('f) ode:= D(f(t), t, 2) + 4*f(t) = sin(2*t) map(e +-> laplace(e, t, s), %) -- Now, solve the ODE directly solve(ode, f, t = 0, [0, 0]) -- First order linear ODE -y:= operator('y); +y:= operator('y) x**2 * D(y(x), x) + 3*x*y(x) = sin(x)/x solve(%, y, x) -- Nonlinear ODE @@ -309,13 +309,13 @@ D(y(x), x, 2) + y(x)*D(y(x), x)**3 = 0 solve(%, y, x) -- A simple parametric ODE D(y(x, a), x) = a*y(x, a) -solve(%, y, x); +solve(%, y, x) -- ODE with boundary conditions. This problem has nontrivial solutions -- y(x) = A sin([pi/2 + n pi] x) for n an arbitrary integer. solve(D(y(x), x, 2) + k**2*y(x) = 0, y, x) -- bc(%, x = 0, y = 0, x = 1, D(y(x), x) = 0) -- System of two linear, constant coefficient ODEs -x:= operator('x); +x:= operator('x) system:= [D(x(t), t) = x(t) - y(t), D(y(t), t) = x(t) + y(t)] -- Check the answer -- Triangular system of two ODEs |