aboutsummaryrefslogtreecommitdiff
path: root/src/input/clifford.input.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/input/clifford.input.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/input/clifford.input.pamphlet')
-rw-r--r--src/input/clifford.input.pamphlet107
1 files changed, 107 insertions, 0 deletions
diff --git a/src/input/clifford.input.pamphlet b/src/input/clifford.input.pamphlet
new file mode 100644
index 00000000..c6f22ac9
--- /dev/null
+++ b/src/input/clifford.input.pamphlet
@@ -0,0 +1,107 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/input clifford.input}
+\author{The Axiom Team}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\section{License}
+<<license>>=
+--Copyright The Numerical Algorithms Group Limited 1991.
+@
+<<*>>=
+<<license>>
+-- CliffordAlgebra(n, K, Q) defines a vector space of dimension 2**n
+-- over K, given a quadratic form Q on K**n.
+--
+-- If e[i] 1<=i<=n is a basis for K**n then
+-- 1, e[i] 1<=i<=n, e[i1]*e[i2] 1<=i1<i2<=n,...,e[1]*e[2]*..*e[n]
+-- is a basis for the Clifford Algebra.
+--
+-- The algebra is defined by the relations
+-- e[i]*e[j] = -e[j]*e[i] i ^= j,
+-- e[i]*e[i] = Q(e[i])
+--
+-- Examples of Clifford Algebras are:
+-- gaussians, quaternions, exterior algebras and spin algebras.
+
+-- Choose rational functions as the ground field.
+)clear all
+K := FRAC POLY INT
+
+--% The complex numbers as a Clifford Algebra
+)clear p qf
+qf: QFORM(1, K) := quadraticForm(matrix([[-1]])$(SQMATRIX(1,K)))
+C := CLIF(1, K, qf)
+i := e(1)$C
+x := a + b * i
+y := c + d * i
+x * y
+recip %
+x*%
+%*y
+
+--% The quaternions as a Clifford Algebra
+)clear p qf
+qf:QFORM(2, K) :=quadraticForm matrix([[-1, 0], [0, -1]])$(SQMATRIX(2,K))
+H := CLIF(2, K, qf)
+i := e(1)$H
+j := e(2)$H
+k := i * j
+x := a + b * i + c * j + d * k
+y := e + f * i + g * j + h * k
+x + y
+x * y
+y * x
+
+--% The exterior algebra on a 3 space.
+)clear p qf
+qf: QFORM(3, K) := quadraticForm(0::SQMATRIX(3,K))
+Ext := CLIF(3,K,qf)
+i := e(1)$Ext
+j := e(2)$Ext
+k := e(3)$Ext
+x := x1*i + x2*j + x3*k
+y := y1*i + y2*j + y3*k
+x + y
+x * y + y * x
+-- In n space, a grade p form has a dual n-p form.
+-- In particular, in 3 space the dual of a grade 2 element identifies
+-- e1*e2->e3, e2*e3->e1, e3*e1->e2.
+dual2 a ==
+ coefficient(a,[2,3])$Ext * i + _
+ coefficient(a,[3,1])$Ext * j + _
+ coefficient(a,[1,2])$Ext * k
+
+-- The vector cross product is then given by
+dual2(x*y)
+
+--% The Dirac Algebra used in Quantum Field Theory.
+)clear p qf
+K := FRAC INT
+g: SQMATRIX(4, K) := [[1,0,0,0],[0,-1,0,0],[0,0,-1,0],[0,0,0,-1]]
+qf: QFORM(4, K) := quadraticForm g
+D := CLIF(4,K,qf)
+
+-- The usual notation is gamma sup i.
+gam := [e(i)$D for i in 1..4]
+
+-- There are various contraction identities of the form
+-- g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t) =
+-- 2*(gam(s)gam(m)gam(n)gam(r) + gam(r)*gam(n)*gam(m)*gam(s))
+-- where the sum over l and t is implied.
+
+-- Verify this identity for m=1,n=2,r=3,s=4
+m := 1; n:= 2; r := 3; s := 4;
+lhs := reduce(+,[reduce(+,[g(l,t)*gam(l)*gam(m)*gam(n)*gam(r)*gam(s)*gam(t)
+ for l in 1..4]) for t in 1..4])
+rhs := 2*(gam s * gam m*gam n*gam r + gam r*gam n*gam m*gam s)
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}