aboutsummaryrefslogtreecommitdiff
path: root/src/algebra
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-06-30 00:57:28 +0000
committerdos-reis <gdr@axiomatics.org>2010-06-30 00:57:28 +0000
commita55bfb825d07c51e240a73dd46292ea4ed181f67 (patch)
treea331f4330c74ed30ec0f19cdf2b0a8174cb0ca71 /src/algebra
parentd22c1854ea64e995bb1efcaa0b1d3da0b411bb60 (diff)
downloadopen-axiom-a55bfb825d07c51e240a73dd46292ea4ed181f67.tar.gz
More cleanups
Diffstat (limited to 'src/algebra')
-rw-r--r--src/algebra/indexedp.spad.pamphlet34
1 files changed, 17 insertions, 17 deletions
diff --git a/src/algebra/indexedp.spad.pamphlet b/src/algebra/indexedp.spad.pamphlet
index 43d67cf4..1b60ecc4 100644
--- a/src/algebra/indexedp.spad.pamphlet
+++ b/src/algebra/indexedp.spad.pamphlet
@@ -25,8 +25,9 @@
++ This category represents the direct product of some set with
++ respect to an ordered indexing set.
-IndexedDirectProductCategory(A:SetCategory,S:OrderedSet): Category ==
- SetCategory with
+IndexedDirectProductCategory(A:BasicType,S:OrderedType): Category ==
+ BasicType with
+ if A has SetCategory and S has SetCategory then SetCategory
map: (A -> A, %) -> %
++ map(f,z) returns the new element created by applying the
++ function f to each component of the direct product element z.
@@ -63,8 +64,8 @@ IndexedDirectProductCategory(A:SetCategory,S:OrderedSet): Category ==
++ Indexed direct products of objects over a set \spad{A}
++ of generators indexed by an ordered set S. All items have finite support.
IndexedDirectProductObject(A,S): Public == Private where
- A: SetCategory
- S: OrderedSet
+ A: BasicType
+ S: OrderedType
Public == IndexedDirectProductCategory(A,S)
Private == add
Term == Pair(S,A)
@@ -84,9 +85,10 @@ IndexedDirectProductObject(A,S): Public == Private where
y' := rest y'
null x' and null y'
- coerce(x:%):OutputForm ==
- bracket [rarrow(termIndex(t)::OutputForm, termValue(t)::OutputForm)
- for t in rep x]
+ if A has CoercibleTo OutputForm and S has CoercibleTo OutputForm then
+ coerce(x:%):OutputForm ==
+ bracket [rarrow(termIndex(t)::OutputForm, termValue(t)::OutputForm)
+ for t in rep x]
-- sample():% == [[sample()$S,sample()$A]$Term]$Rep
@@ -113,11 +115,13 @@ IndexedDirectProductObject(A,S): Public == Private where
++ Indexed direct products of abelian monoids over an abelian monoid \spad{A} of
++ generators indexed by the ordered set S. All items have finite support.
++ Only non-zero terms are stored.
-IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedSet):
+IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedType):
Join(AbelianMonoid,IndexedDirectProductCategory(A,S))
== IndexedDirectProductObject(A,S) add
--representations
Term == Pair(S,A)
+ import Term
+ import List Term
termIndex(t: Term): S == first t
termValue(t: Term): A == second t
@@ -125,7 +129,7 @@ IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedSet):
n: NonNegativeInteger
f: A -> A
s: S
- 0 == per indexedDirectProductObject []
+ 0 == nil$List(Term) pretend %
zero? x == null terms x
qsetrest!: (List Term, List Term) -> List Term
@@ -178,7 +182,7 @@ IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedSet):
monomial(r,s) ==
zero? r => 0
- per indexedDirectProductObject [[s,r]]
+ [[s,r]] pretend %
map(f,x) ==
[[termIndex tm,a] for tm in terms x
@@ -203,7 +207,7 @@ IndexedDirectProductAbelianMonoid(A:AbelianMonoid,S:OrderedSet):
++ generators indexed by the ordered set S.
++ The inherited order is lexicographical.
++ All items have finite support: only non-zero terms are stored.
-IndexedDirectProductOrderedAbelianMonoid(A:OrderedAbelianMonoid,S:OrderedSet):
+IndexedDirectProductOrderedAbelianMonoid(A:OrderedAbelianMonoid,S:OrderedType):
Join(OrderedAbelianMonoid,IndexedDirectProductCategory(A,S))
== IndexedDirectProductAbelianMonoid(A,S) add
--representations
@@ -266,12 +270,8 @@ IndexedDirectProductOrderedAbelianMonoidSup(A:OrderedAbelianMonoidSup,S:OrderedS
++ Indexed direct products of abelian groups over an abelian group \spad{A} of
++ generators indexed by the ordered set S.
++ All items have finite support: only non-zero terms are stored.
-IndexedDirectProductAbelianGroup(A:AbelianGroup,S:OrderedSet):
- Join(AbelianGroup,IndexedDirectProductCategory(A,S)) with
- construct: List Pair(A,S) -> %
- ++ \spad{construct l} returns an object that is a linear
- ++ combination with support in \spad{A} and coefficients
- ++ in \spad{A}.
+IndexedDirectProductAbelianGroup(A:AbelianGroup,S:OrderedType):
+ Join(AbelianGroup,IndexedDirectProductCategory(A,S))
== IndexedDirectProductAbelianMonoid(A,S) add
--representations
Term == Pair(S,A)