diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/suts.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/suts.spad.pamphlet')
-rw-r--r-- | src/algebra/suts.spad.pamphlet | 439 |
1 files changed, 439 insertions, 0 deletions
diff --git a/src/algebra/suts.spad.pamphlet b/src/algebra/suts.spad.pamphlet new file mode 100644 index 00000000..131d99b4 --- /dev/null +++ b/src/algebra/suts.spad.pamphlet @@ -0,0 +1,439 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra suts.spad} +\author{Clifton J. Williamson} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{domain SUTS SparseUnivariateTaylorSeries} +<<domain SUTS SparseUnivariateTaylorSeries>>= +)abbrev domain SUTS SparseUnivariateTaylorSeries +++ Author: Clifton J. Williamson +++ Date Created: 16 February 1990 +++ Date Last Updated: 10 March 1995 +++ Basic Operations: +++ Related Domains: InnerSparseUnivariatePowerSeries, +++ SparseUnivariateLaurentSeries, SparseUnivariatePuiseuxSeries +++ Also See: +++ AMS Classifications: +++ Keywords: Taylor series, sparse power series +++ Examples: +++ References: +++ Description: Sparse Taylor series in one variable +++ \spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor +++ series in one variable with coefficients in an arbitrary ring. The +++ parameters of the type specify the coefficient ring, the power series +++ variable, and the center of the power series expansion. For example, +++ \spadtype{SparseUnivariateTaylorSeries}(Integer,x,3) represents Taylor +++ series in \spad{(x - 3)} with \spadtype{Integer} coefficients. +SparseUnivariateTaylorSeries(Coef,var,cen): Exports == Implementation where + Coef : Ring + var : Symbol + cen : Coef + COM ==> OrderedCompletion Integer + I ==> Integer + L ==> List + NNI ==> NonNegativeInteger + OUT ==> OutputForm + P ==> Polynomial Coef + REF ==> Reference OrderedCompletion Integer + RN ==> Fraction Integer + Term ==> Record(k:Integer,c:Coef) + SG ==> String + ST ==> Stream Term + UP ==> UnivariatePolynomial(var,Coef) + + Exports ==> UnivariateTaylorSeriesCategory(Coef) with + coerce: UP -> % + ++\spad{coerce(p)} converts a univariate polynomial p in the variable + ++\spad{var} to a univariate Taylor series in \spad{var}. + univariatePolynomial: (%,NNI) -> UP + ++\spad{univariatePolynomial(f,k)} returns a univariate polynomial + ++ consisting of the sum of all terms of f of degree \spad{<= k}. + coerce: Variable(var) -> % + ++\spad{coerce(var)} converts the series variable \spad{var} into a + ++ Taylor series. + differentiate: (%,Variable(var)) -> % + ++ \spad{differentiate(f(x),x)} computes the derivative of + ++ \spad{f(x)} with respect to \spad{x}. + if Coef has Algebra Fraction Integer then + integrate: (%,Variable(var)) -> % + ++ \spad{integrate(f(x),x)} returns an anti-derivative of the power + ++ series \spad{f(x)} with constant coefficient 0. + ++ We may integrate a series when we can divide coefficients + ++ by integers. + + Implementation ==> InnerSparseUnivariatePowerSeries(Coef) add + import REF + + Rep := InnerSparseUnivariatePowerSeries(Coef) + + makeTerm: (Integer,Coef) -> Term + makeTerm(exp,coef) == [exp,coef] + getCoef: Term -> Coef + getCoef term == term.c + getExpon: Term -> Integer + getExpon term == term.k + + monomial(coef,expon) == monomial(coef,expon)$Rep + extend(x,n) == extend(x,n)$Rep + + 0 == monomial(0,0)$Rep + 1 == monomial(1,0)$Rep + + recip uts == iExquo(1,uts,true) + + if Coef has IntegralDomain then + uts1 exquo uts2 == iExquo(uts1,uts2,true) + + quoByVar uts == taylorQuoByVar(uts)$Rep + + differentiate(x:%,v:Variable(var)) == differentiate x + +--% Creation and destruction of series + + coerce(v: Variable(var)) == + zero? cen => monomial(1,1) + monomial(1,1) + monomial(cen,0) + + coerce(p:UP) == + zero? p => 0 + if not zero? cen then p := p(monomial(1,1)$UP + monomial(cen,0)$UP) + st : ST := empty() + while not zero? p repeat + st := concat(makeTerm(degree p,leadingCoefficient p),st) + p := reductum p + makeSeries(ref plusInfinity(),st) + + univariatePolynomial(x,n) == + extend(x,n); st := getStream x + ans : UP := 0; oldDeg : I := 0; + mon := monomial(1,1)$UP - monomial(center x,0)$UP; monPow : UP := 1 + while explicitEntries? st repeat + (xExpon := getExpon(xTerm := frst st)) > n => return ans + pow := (xExpon - oldDeg) :: NNI; oldDeg := xExpon + monPow := monPow * mon ** pow + ans := ans + getCoef(xTerm) * monPow + st := rst st + ans + + polynomial(x,n) == + extend(x,n); st := getStream x + ans : P := 0; oldDeg : I := 0; + mon := (var :: P) - (center(x) :: P); monPow : P := 1 + while explicitEntries? st repeat + (xExpon := getExpon(xTerm := frst st)) > n => return ans + pow := (xExpon - oldDeg) :: NNI; oldDeg := xExpon + monPow := monPow * mon ** pow + ans := ans + getCoef(xTerm) * monPow + st := rst st + ans + + polynomial(x,n1,n2) == polynomial(truncate(x,n1,n2),n2) + + truncate(x,n) == truncate(x,n)$Rep + truncate(x,n1,n2) == truncate(x,n1,n2)$Rep + + iCoefficients: (ST,REF,I) -> Stream Coef + iCoefficients(x,refer,n) == delay + -- when this function is called, we are computing the nth order + -- coefficient of the series + explicitlyEmpty? x => empty() + -- if terms up to order n have not been computed, + -- apply lazy evaluation + nn := n :: COM + while (nx := elt refer) < nn repeat lazyEvaluate x + -- must have nx >= n + explicitEntries? x => + xCoef := getCoef(xTerm := frst x); xExpon := getExpon xTerm + xExpon = n => concat(xCoef,iCoefficients(rst x,refer,n + 1)) + -- must have nx > n + concat(0,iCoefficients(x,refer,n + 1)) + concat(0,iCoefficients(x,refer,n + 1)) + + coefficients uts == + refer := getRef uts; x := getStream uts + iCoefficients(x,refer,0) + + terms uts == terms(uts)$Rep pretend Stream Record(k:NNI,c:Coef) + + iSeries: (Stream Coef,I,REF) -> ST + iSeries(st,n,refer) == delay + -- when this function is called, we are creating the nth order + -- term of a series + empty? st => (setelt(refer,plusInfinity()); empty()) + setelt(refer,n :: COM) + zero? (coef := frst st) => iSeries(rst st,n + 1,refer) + concat(makeTerm(n,coef),iSeries(rst st,n + 1,refer)) + + series(st:Stream Coef) == + refer := ref(-1) + makeSeries(refer,iSeries(st,0,refer)) + + nniToI: Stream Record(k:NNI,c:Coef) -> ST + nniToI st == + empty? st => empty() + term : Term := [(frst st).k,(frst st).c] + concat(term,nniToI rst st) + + series(st:Stream Record(k:NNI,c:Coef)) == series(nniToI st)$Rep + +--% Values + + variable x == var + center x == cen + + coefficient(x,n) == coefficient(x,n)$Rep + elt(x:%,n:NonNegativeInteger) == coefficient(x,n) + + pole? x == false + + order x == (order(x)$Rep) :: NNI + order(x,n) == (order(x,n)$Rep) :: NNI + +--% Composition + + elt(uts1:%,uts2:%) == + zero? uts2 => coefficient(uts1,0) :: % + not zero? coefficient(uts2,0) => + error "elt: second argument must have positive order" + iCompose(uts1,uts2) + +--% Integration + + if Coef has Algebra Fraction Integer then + + integrate(x:%,v:Variable(var)) == integrate x + +--% Transcendental functions + + (uts1:%) ** (uts2:%) == exp(log(uts1) * uts2) + + if Coef has CommutativeRing then + + (uts:%) ** (r:RN) == cRationalPower(uts,r) + + exp uts == cExp uts + log uts == cLog uts + + sin uts == cSin uts + cos uts == cCos uts + tan uts == cTan uts + cot uts == cCot uts + sec uts == cSec uts + csc uts == cCsc uts + + asin uts == cAsin uts + acos uts == cAcos uts + atan uts == cAtan uts + acot uts == cAcot uts + asec uts == cAsec uts + acsc uts == cAcsc uts + + sinh uts == cSinh uts + cosh uts == cCosh uts + tanh uts == cTanh uts + coth uts == cCoth uts + sech uts == cSech uts + csch uts == cCsch uts + + asinh uts == cAsinh uts + acosh uts == cAcosh uts + atanh uts == cAtanh uts + acoth uts == cAcoth uts + asech uts == cAsech uts + acsch uts == cAcsch uts + + else + + ZERO : SG := "series must have constant coefficient zero" + ONE : SG := "series must have constant coefficient one" + NPOWERS : SG := "series expansion has terms of negative degree" + + (uts:%) ** (r:RN) == +-- not one? coefficient(uts,0) => + not (coefficient(uts,0) = 1) => + error "**: constant coefficient must be one" + onePlusX : % := monomial(1,0) + monomial(1,1) + ratPow := cPower(uts,r :: Coef) + iCompose(ratPow,uts - 1) + + exp uts == + zero? coefficient(uts,0) => + expx := cExp monomial(1,1) + iCompose(expx,uts) + error concat("exp: ",ZERO) + + log uts == +-- one? coefficient(uts,0) => + (coefficient(uts,0) = 1) => + log1PlusX := cLog(monomial(1,0) + monomial(1,1)) + iCompose(log1PlusX,uts - 1) + error concat("log: ",ONE) + + sin uts == + zero? coefficient(uts,0) => + sinx := cSin monomial(1,1) + iCompose(sinx,uts) + error concat("sin: ",ZERO) + + cos uts == + zero? coefficient(uts,0) => + cosx := cCos monomial(1,1) + iCompose(cosx,uts) + error concat("cos: ",ZERO) + + tan uts == + zero? coefficient(uts,0) => + tanx := cTan monomial(1,1) + iCompose(tanx,uts) + error concat("tan: ",ZERO) + + cot uts == + zero? uts => error "cot: cot(0) is undefined" + zero? coefficient(uts,0) => error concat("cot: ",NPOWERS) + error concat("cot: ",ZERO) + + sec uts == + zero? coefficient(uts,0) => + secx := cSec monomial(1,1) + iCompose(secx,uts) + error concat("sec: ",ZERO) + + csc uts == + zero? uts => error "csc: csc(0) is undefined" + zero? coefficient(uts,0) => error concat("csc: ",NPOWERS) + error concat("csc: ",ZERO) + + asin uts == + zero? coefficient(uts,0) => + asinx := cAsin monomial(1,1) + iCompose(asinx,uts) + error concat("asin: ",ZERO) + + atan uts == + zero? coefficient(uts,0) => + atanx := cAtan monomial(1,1) + iCompose(atanx,uts) + error concat("atan: ",ZERO) + + acos z == error "acos: acos undefined on this coefficient domain" + acot z == error "acot: acot undefined on this coefficient domain" + asec z == error "asec: asec undefined on this coefficient domain" + acsc z == error "acsc: acsc undefined on this coefficient domain" + + sinh uts == + zero? coefficient(uts,0) => + sinhx := cSinh monomial(1,1) + iCompose(sinhx,uts) + error concat("sinh: ",ZERO) + + cosh uts == + zero? coefficient(uts,0) => + coshx := cCosh monomial(1,1) + iCompose(coshx,uts) + error concat("cosh: ",ZERO) + + tanh uts == + zero? coefficient(uts,0) => + tanhx := cTanh monomial(1,1) + iCompose(tanhx,uts) + error concat("tanh: ",ZERO) + + coth uts == + zero? uts => error "coth: coth(0) is undefined" + zero? coefficient(uts,0) => error concat("coth: ",NPOWERS) + error concat("coth: ",ZERO) + + sech uts == + zero? coefficient(uts,0) => + sechx := cSech monomial(1,1) + iCompose(sechx,uts) + error concat("sech: ",ZERO) + + csch uts == + zero? uts => error "csch: csch(0) is undefined" + zero? coefficient(uts,0) => error concat("csch: ",NPOWERS) + error concat("csch: ",ZERO) + + asinh uts == + zero? coefficient(uts,0) => + asinhx := cAsinh monomial(1,1) + iCompose(asinhx,uts) + error concat("asinh: ",ZERO) + + atanh uts == + zero? coefficient(uts,0) => + atanhx := cAtanh monomial(1,1) + iCompose(atanhx,uts) + error concat("atanh: ",ZERO) + + acosh uts == error "acosh: acosh undefined on this coefficient domain" + acoth uts == error "acoth: acoth undefined on this coefficient domain" + asech uts == error "asech: asech undefined on this coefficient domain" + acsch uts == error "acsch: acsch undefined on this coefficient domain" + + if Coef has Field then + if Coef has Algebra Fraction Integer then + + (uts:%) ** (r:Coef) == +-- not one? coefficient(uts,1) => + not (coefficient(uts,1) = 1) => + error "**: constant coefficient should be 1" + cPower(uts,r) + +--% OutputForms + + coerce(x:%): OUT == + count : NNI := _$streamCount$Lisp + extend(x,count) + seriesToOutputForm(getStream x,getRef x,variable x,center x,1) + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<domain SUTS SparseUnivariateTaylorSeries>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |