aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/sttf.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2011-10-25 03:47:29 +0000
committerdos-reis <gdr@axiomatics.org>2011-10-25 03:47:29 +0000
commit2092a554d70524bc90440d96367e32c9ede28ee8 (patch)
treef60d455b9d03bfe6454bb2ae33b82114aeb3f91b /src/algebra/sttf.spad.pamphlet
parent99aeb02edd1614d30e308a9267325f138617d58f (diff)
downloadopen-axiom-2092a554d70524bc90440d96367e32c9ede28ee8.tar.gz
* algebra/perman.spad.pamphlet (Permanent): Specify type of local
variable j. * algebra/patmatch1.spad.pamphlet (PatternMatchTools): Tidy. * algebra/padic.spad.pamphlet: Restrict type of literal constants. * algebra/sttf.spad.pamphlet: Likewise. * algebra/puiseux.spad.pamphlet: Likewise. * algebra/odealg.spad.pamphlet (SystemODESolver) [applyLodo0]: Specify type of local variable ans. * algebra/numtheor.spad.pamphlet (IntegerNumberTheoryFunctions): Tidy. * algebra/naalgc.spad.pamphlet (MonadWithUnit) [rightPower]: Specify type of local variable res. [leftPower]: Likewise. * algebra/lodop.spad.pamphlet (NonCommutativeOperatorDivision) [leftLcm]: Specify type of local variable v. * algebra/intfact.spad.pamphlet (IntegerRoots) [approxSqrt]: Specify type of local variables old and new. * algebra/elfuts.spad.pamphlet (EllipticFunctionsUnivariateTaylorSeries): Restrict types of literal constants. * algebra/ffnb.spad.pamphlet (FiniteFieldNormalBasisExtensionByPolynomial): Likewise. * algebra/fnla.spad.pamphlet (FreeNilpotentLie): Likewise. * algebra/intaux.spad.pamphlet (IntegrationResult): Likewise. * algebra/defintef.spad.pamphlet (ElementaryFunctionDefiniteIntegration) [checkSMP]: Specify type in the definition of local variable n. * algebra/combinat.spad.pamphlet (IntegerCombinatoricFunctions): Tidy definition of local variables. * algebra/clifford.spad.pamphlet (CliffordAlgebra): Specify type in the definition of local variables k, exchanges, bz. * algebra/catdef.spad.pamphlet (CartesianTensor): Specify type in the definition of local varibles rx and offz. Remove useless variables zol, xol, oly, and zoly.
Diffstat (limited to 'src/algebra/sttf.spad.pamphlet')
-rw-r--r--src/algebra/sttf.spad.pamphlet98
1 files changed, 49 insertions, 49 deletions
diff --git a/src/algebra/sttf.spad.pamphlet b/src/algebra/sttf.spad.pamphlet
index f65e7bbc..682d3fb7 100644
--- a/src/algebra/sttf.spad.pamphlet
+++ b/src/algebra/sttf.spad.pamphlet
@@ -134,7 +134,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
expre(r,e,dx) == lazyIntegrate(r,e*dx)
exp z ==
- empty? z => 1 :: ST
+ empty? z => 1@Coef :: ST
(coef := frst z) = 0 => YS expre(1,#1,deriv z)
TRANSFCN => YS expre(exp coef,#1,deriv z)
error concat("exp: ",TRCONST)
@@ -165,7 +165,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
-- [lazyIntegrate(rs,st1),lazyIntegrate(rc,st2)]
sincos z ==
- empty? z => [0 :: ST,1 :: ST]
+ empty? z => [0@Coef :: ST,1@Coef :: ST]
l :=
(coef := frst z) = 0 => YS(sincosre(0,1,#1,deriv z,-1),2)
TRANSFCN => YS(sincosre(sin coef,cos coef,#1,deriv z,-1),2)
@@ -176,7 +176,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
cos z == sincos(z).cos
tanre:(Coef,ST,ST,Coef) -> ST
- tanre(r,t,dx,sign) == lazyIntegrate(r,((1 :: ST) + sign*t*t)*dx)
+ tanre(r,t,dx,sign) == lazyIntegrate(r,((1@Coef :: ST) + sign*t*t)*dx)
-- When the compiler had difficulties with the above definition,
-- I did the following to help it:
@@ -191,13 +191,13 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
-- lazyIntegrate(r,st1)
tan z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(coef := frst z) = 0 => YS tanre(0,#1,deriv z,1)
TRANSFCN => YS tanre(tan coef,#1,deriv z,1)
error concat("tan: ",TRCONST)
cotre:(Coef,ST,ST) -> ST
- cotre(r,t,dx) == lazyIntegrate(r,-((1 :: ST) + t*t)*dx)
+ cotre(r,t,dx) == lazyIntegrate(r,-((1@Coef :: ST) + t*t)*dx)
-- When the compiler had difficulties with the above definition,
-- I did the following to help it:
@@ -218,7 +218,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
error concat("cot: ",TRCONST)
sec z ==
- empty? z => 1 :: ST
+ empty? z => 1@Coef :: ST
frst z = 0 => recip(cos z) :: ST
TRANSFCN =>
cosz := cos z
@@ -245,12 +245,12 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
"failed"
asin z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(coef := frst z) = 0 =>
- integrate(0,powern(-1/2,(1 :: ST) - z*z) * (deriv z))
+ integrate(0,powern(-1/2,(1@Coef :: ST) - z*z) * (deriv z))
TRANSFCN =>
coef = 1 or coef = -1 =>
- x := (1 :: ST) - z*z
+ x := (1@Coef :: ST) - z*z
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("asin: ",MAYFPOW)
@@ -260,7 +260,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
(quot := (deriv z) exquo squirt) case "failed" =>
error concat("asin: ",NOTINV)
integrate(asin coef,quot :: ST)
- integrate(asin coef,powern(-1/2,(1 :: ST) - z*z) * (deriv z))
+ integrate(asin coef,powern(-1/2,(1@Coef :: ST) - z*z) * (deriv z))
error concat("asin: ",TRCONST)
acos z ==
@@ -270,7 +270,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
TRANSFCN =>
coef := frst z
coef = 1 or coef = -1 =>
- x := (1 :: ST) - z*z
+ x := (1@Coef :: ST) - z*z
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("acos: ",MAYFPOW)
@@ -280,15 +280,15 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
(quot := (-deriv z) exquo squirt) case "failed" =>
error concat("acos: ",NOTINV)
integrate(acos coef,quot :: ST)
- integrate(acos coef,-powern(-1/2,(1 :: ST) - z*z) * (deriv z))
+ integrate(acos coef,-powern(-1/2,(1@Coef :: ST) - z*z) * (deriv z))
error concat("acos: ",TRCONST)
atan z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(coef := frst z) = 0 =>
- integrate(0,(recip((1 :: ST) + z*z) :: ST) * (deriv z))
+ integrate(0,(recip((1@Coef :: ST) + z*z) :: ST) * (deriv z))
TRANSFCN =>
- (y := recip((1 :: ST) + z*z)) case "failed" =>
+ (y := recip((1@Coef :: ST) + z*z)) case "failed" =>
error concat("atan: ",LOGS)
integrate(atan coef,(y :: ST) * (deriv z))
error concat("atan: ",TRCONST)
@@ -298,7 +298,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
TRANSFCN => acot(0)$Coef :: ST
error concat("acot: ",TRCONST)
TRANSFCN =>
- (y := recip((1 :: ST) + z*z)) case "failed" =>
+ (y := recip((1@Coef :: ST) + z*z)) case "failed" =>
error concat("acot: ",LOGS)
integrate(acot frst z,-(y :: ST) * (deriv z))
error concat("acot: ",TRCONST)
@@ -309,7 +309,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
(coef := frst z) = 0 =>
error "asec: constant coefficient should not be 0"
coef = 1 or coef = -1 =>
- x := z*z - (1 :: ST)
+ x := z*z - (1@Coef :: ST)
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("asec: ",MAYFPOW)
@@ -321,7 +321,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
(quot2 := (quot :: ST) exquo z) case "failed" =>
error concat("asec: ",NOTINV)
integrate(asec coef,quot2 :: ST)
- integrate(asec coef,(powern(-1/2,z*z-(1::ST))*(deriv z)) / z)
+ integrate(asec coef,(powern(-1/2,z*z-(1@Coef::ST))*(deriv z)) / z)
error concat("asec: ",TRCONST)
acsc z ==
@@ -330,7 +330,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
(coef := frst z) = 0 =>
error "acsc: constant coefficient should not be zero"
coef = 1 or coef = -1 =>
- x := z*z - (1 :: ST)
+ x := z*z - (1@Coef :: ST)
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("acsc: ",MAYFPOW)
@@ -342,13 +342,13 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
(quot2 := (quot :: ST) exquo z) case "failed" =>
error concat("acsc: ",NOTINV)
integrate(acsc coef,quot2 :: ST)
- integrate(acsc coef,-(powern(-1/2,z*z-(1::ST))*(deriv z)) / z)
+ integrate(acsc coef,-(powern(-1/2,z*z-(1@Coef::ST))*(deriv z)) / z)
error concat("acsc: ",TRCONST)
--% Hyperbolic Trigonometric Functions
sinhcosh z ==
- empty? z => [0 :: ST,1 :: ST]
+ empty? z => [0@Coef :: ST,1@Coef :: ST]
l :=
(coef := frst z) = 0 => YS(sincosre(0,1,#1,deriv z,1),2)
TRANSFCN => YS(sincosre(sinh coef,cosh coef,#1,deriv z,1),2)
@@ -359,7 +359,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
cosh z == sinhcosh(z).cosh
tanh z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(coef := frst z) = 0 => YS tanre(0,#1,deriv z,-1)
TRANSFCN => YS tanre(tanh coef,#1,deriv z,-1)
error concat("tanh: ",TRCONST)
@@ -381,10 +381,10 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
recip(sinhz) :: ST
asinh z ==
- empty? z => 0 :: ST
- (coef := frst z) = 0 => log(z + powern(1/2,(1 :: ST) + z*z))
+ empty? z => 0@Coef :: ST
+ (coef := frst z) = 0 => log(z + powern(1/2,(1@Coef :: ST) + z*z))
TRANSFCN =>
- x := (1 :: ST) + z*z
+ x := (1@Coef :: ST) + z*z
-- compute order of 'x', in case coefficient(z,0) = +- %i
(ord := orderOrFailed x) case "failed" =>
error concat("asinh: ",MAYFPOW)
@@ -401,7 +401,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
TRANSFCN =>
coef := frst z
coef = 1 or coef = -1 =>
- x := z*z - (1 :: ST)
+ x := z*z - (1@Coef :: ST)
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("acosh: ",MAYFPOW)
@@ -409,16 +409,16 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
odd? order => error concat("acosh: ",FPOWERS)
-- the argument to 'log' must have a non-zero constant term
log(z + powern(1/2,x))
- log(z + powern(1/2,z*z - (1 :: ST)))
+ log(z + powern(1/2,z*z - (1@Coef :: ST)))
error concat("acosh: ",TRCONST)
atanh z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(coef := frst z) = 0 =>
- (inv(2::RN)::Coef) * log(((1 :: ST) + z)/((1 :: ST) - z))
+ (inv(2::RN)::Coef) * log(((1@Coef :: ST) + z)/((1@Coef :: ST) - z))
TRANSFCN =>
coef = 1 or coef = -1 => error concat("atanh: ",LOGS)
- (inv(2::RN)::Coef) * log(((1 :: ST) + z)/((1 :: ST) - z))
+ (inv(2::RN)::Coef) * log(((1@Coef :: ST) + z)/((1@Coef :: ST) - z))
error concat("atanh: ",TRCONST)
acoth z ==
@@ -427,7 +427,7 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
error concat("acoth: ",TRCONST)
TRANSFCN =>
frst z = 1 or frst z = -1 => error concat("acoth: ",LOGS)
- (inv(2::RN)::Coef) * log((z + (1 :: ST))/(z - (1 :: ST)))
+ (inv(2::RN)::Coef) * log((z + (1@Coef :: ST))/(z - (1@Coef :: ST)))
error concat("acoth: ",TRCONST)
asech z ==
@@ -435,27 +435,27 @@ StreamTranscendentalFunctions(Coef): Exports == Implementation where
TRANSFCN =>
(coef := frst z) = 0 => error concat("asech: ",NPOWLOG)
coef = 1 or coef = -1 =>
- x := (1 :: ST) - z*z
+ x := (1@Coef :: ST) - z*z
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("asech: ",MAYFPOW)
(order := ord :: I) = -1 => return asech(coef) :: ST
odd? order => error concat("asech: ",FPOWERS)
- log(((1 :: ST) + powern(1/2,x))/z)
- log(((1 :: ST) + powern(1/2,(1 :: ST) - z*z))/z)
+ log(((1@Coef :: ST) + powern(1/2,x))/z)
+ log(((1@Coef :: ST) + powern(1/2,(1@Coef :: ST) - z*z))/z)
error concat("asech: ",TRCONST)
acsch z ==
empty? z => error "acsch: acsch(0) is undefined"
TRANSFCN =>
frst z = 0 => error concat("acsch: ",NPOWLOG)
- x := z*z + (1 :: ST)
+ x := z*z + (1@Coef :: ST)
-- compute order of 'x'
(ord := orderOrFailed x) case "failed" =>
error concat("acsc: ",MAYFPOW)
(order := ord :: I) = -1 => return acsch(frst z) :: ST
odd? order => error concat("acsch: ",FPOWERS)
- log(((1 :: ST) + powern(1/2,x))/z)
+ log(((1@Coef :: ST) + powern(1/2,x))/z)
error concat("acsch: ",TRCONST)
@
@@ -563,7 +563,7 @@ StreamTranscendentalFunctionsNonCommutative(Coef): _
--% Exponentials and Logarithms
exp z ==
- empty? z => 1 :: ST
+ empty? z => 1@Coef :: ST
(frst z) = 0 =>
expx := exp(monom(1,1))$STTF
compose(expx,z)
@@ -581,21 +581,21 @@ StreamTranscendentalFunctionsNonCommutative(Coef): _
--% Trigonometric Functions
sin z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(frst z) = 0 =>
sinx := sin(monom(1,1))$STTF
compose(sinx,z)
error concat("sin: ",ZERO)
cos z ==
- empty? z => 1 :: ST
+ empty? z => 1@Coef :: ST
(frst z) = 0 =>
cosx := cos(monom(1,1))$STTF
compose(cosx,z)
error concat("cos: ",ZERO)
tan z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(frst z) = 0 =>
tanx := tan(monom(1,1))$STTF
compose(tanx,z)
@@ -607,7 +607,7 @@ StreamTranscendentalFunctionsNonCommutative(Coef): _
error concat("cot: ",ZERO)
sec z ==
- empty? z => 1 :: ST
+ empty? z => 1@Coef :: ST
(frst z) = 0 =>
secx := sec(monom(1,1))$STTF
compose(secx,z)
@@ -619,14 +619,14 @@ StreamTranscendentalFunctionsNonCommutative(Coef): _
error concat("csc: ",ZERO)
asin z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(frst z) = 0 =>
asinx := asin(monom(1,1))$STTF
compose(asinx,z)
error concat("asin: ",ZERO)
atan z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(frst z) = 0 =>
atanx := atan(monom(1,1))$STTF
compose(atanx,z)
@@ -640,21 +640,21 @@ StreamTranscendentalFunctionsNonCommutative(Coef): _
--% Hyperbolic Trigonometric Functions
sinh z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(frst z) = 0 =>
sinhx := sinh(monom(1,1))$STTF
compose(sinhx,z)
error concat("sinh: ",ZERO)
cosh z ==
- empty? z => 1 :: ST
+ empty? z => 1@Coef :: ST
(frst z) = 0 =>
coshx := cosh(monom(1,1))$STTF
compose(coshx,z)
error concat("cosh: ",ZERO)
tanh z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(frst z) = 0 =>
tanhx := tanh(monom(1,1))$STTF
compose(tanhx,z)
@@ -666,7 +666,7 @@ StreamTranscendentalFunctionsNonCommutative(Coef): _
error concat("coth: ",ZERO)
sech z ==
- empty? z => 1 :: ST
+ empty? z => 1@Coef :: ST
(frst z) = 0 =>
sechx := sech(monom(1,1))$STTF
compose(sechx,z)
@@ -678,14 +678,14 @@ StreamTranscendentalFunctionsNonCommutative(Coef): _
error concat("csch: ",ZERO)
asinh z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(frst z) = 0 =>
asinhx := asinh(monom(1,1))$STTF
compose(asinhx,z)
error concat("asinh: ",ZERO)
atanh z ==
- empty? z => 0 :: ST
+ empty? z => 0@Coef :: ST
(frst z) = 0 =>
atanhx := atanh(monom(1,1))$STTF
compose(atanhx,z)