diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/rdeef.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/rdeef.spad.pamphlet')
-rw-r--r-- | src/algebra/rdeef.spad.pamphlet | 568 |
1 files changed, 568 insertions, 0 deletions
diff --git a/src/algebra/rdeef.spad.pamphlet b/src/algebra/rdeef.spad.pamphlet new file mode 100644 index 00000000..662c1f27 --- /dev/null +++ b/src/algebra/rdeef.spad.pamphlet @@ -0,0 +1,568 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra rdeef.spad} +\author{Manuel Bronstein} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{package INTTOOLS IntegrationTools} +<<package INTTOOLS IntegrationTools>>= +)abbrev package INTTOOLS IntegrationTools +++ Tools for the integrator +++ Author: Manuel Bronstein +++ Date Created: 25 April 1990 +++ Date Last Updated: 9 June 1993 +++ Keywords: elementary, function, integration. +IntegrationTools(R:OrderedSet, F:FunctionSpace R): Exp == Impl where + K ==> Kernel F + SE ==> Symbol + P ==> SparseMultivariatePolynomial(R, K) + UP ==> SparseUnivariatePolynomial F + IR ==> IntegrationResult F + ANS ==> Record(special:F, integrand:F) + U ==> Union(ANS, "failed") + ALGOP ==> "%alg" + + Exp ==> with + varselect: (List K, SE) -> List K + ++ varselect([k1,...,kn], x) returns the ki which involve x. + kmax : List K -> K + ++ kmax([k1,...,kn]) returns the top-level ki for integration. + ksec : (K, List K, SE) -> K + ++ ksec(k, [k1,...,kn], x) returns the second top-level ki + ++ after k involving x. + union : (List K, List K) -> List K + ++ union(l1, l2) returns set-theoretic union of l1 and l2. + vark : (List F, SE) -> List K + ++ vark([f1,...,fn],x) returns the set-theoretic union of + ++ \spad{(varselect(f1,x),...,varselect(fn,x))}. + if R has IntegralDomain then + removeConstantTerm: (F, SE) -> F + ++ removeConstantTerm(f, x) returns f minus any additive constant + ++ with respect to x. + if R has GcdDomain and F has ElementaryFunctionCategory then + mkPrim: (F, SE) -> F + ++ mkPrim(f, x) makes the logs in f which are linear in x + ++ primitive with respect to x. + if R has ConvertibleTo Pattern Integer and R has PatternMatchable Integer + and F has LiouvillianFunctionCategory and F has RetractableTo SE then + intPatternMatch: (F, SE, (F, SE) -> IR, (F, SE) -> U) -> IR + ++ intPatternMatch(f, x, int, pmint) tries to integrate \spad{f} + ++ first by using the integration function \spad{int}, and then + ++ by using the pattern match intetgration function \spad{pmint} + ++ on any remaining unintegrable part. + + Impl ==> add + better?: (K, K) -> Boolean + + union(l1, l2) == setUnion(l1, l2) + varselect(l, x) == [k for k in l | member?(x, variables(k::F))] + ksec(k, l, x) == kmax setUnion(remove(k, l), vark(argument k, x)) + + vark(l, x) == + varselect(reduce("setUnion",[kernels f for f in l],empty()$List(K)), x) + + kmax l == + ans := first l + for k in rest l repeat + if better?(k, ans) then ans := k + ans + +-- true if x should be considered before y in the tower + better?(x, y) == + height(y) ^= height(x) => height(y) < height(x) + has?(operator y, ALGOP) or + (is?(y, "exp"::SE) and not is?(x, "exp"::SE) + and not has?(operator x, ALGOP)) + + if R has IntegralDomain then + removeConstantTerm(f, x) == + not freeOf?((den := denom f)::F, x) => f + (u := isPlus(num := numer f)) case "failed" => + freeOf?(num::F, x) => 0 + f + ans:P := 0 + for term in u::List(P) repeat + if not freeOf?(term::F, x) then ans := ans + term + ans / den + + if R has GcdDomain and F has ElementaryFunctionCategory then + psimp : (P, SE) -> Record(coef:Integer, logand:F) + cont : (P, List K) -> P + logsimp : (F, SE) -> F + linearLog?: (K, F, SE) -> Boolean + + logsimp(f, x) == + r1 := psimp(numer f, x) + r2 := psimp(denom f, x) + g := gcd(r1.coef, r2.coef) + g * log(r1.logand ** (r1.coef quo g) / r2.logand ** (r2.coef quo g)) + + cont(p, l) == + empty? l => p + q := univariate(p, first l) + cont(unitNormal(leadingCoefficient q).unit * content q, rest l) + + linearLog?(k, f, x) == + is?(k, "log"::SE) and + ((u := retractIfCan(univariate(f,k))@Union(UP,"failed")) case UP) +-- and one?(degree(u::UP)) + and (degree(u::UP) = 1) + and not member?(x, variables leadingCoefficient(u::UP)) + + mkPrim(f, x) == + lg := [k for k in kernels f | linearLog?(k, f, x)] + eval(f, lg, [logsimp(first argument k, x) for k in lg]) + + psimp(p, x) == + (u := isExpt(p := ((p exquo cont(p, varselect(variables p, x)))::P))) + case "failed" => [1, p::F] + [u.exponent, u.var::F] + + if R has Join(ConvertibleTo Pattern Integer, PatternMatchable Integer) + and F has Join(LiouvillianFunctionCategory, RetractableTo SE) then + intPatternMatch(f, x, int, pmint) == + ir := int(f, x) + empty?(l := notelem ir) => ir + ans := ratpart ir + nl:List(Record(integrand:F, intvar:F)) := empty() + lg := logpart ir + for rec in l repeat + u := pmint(rec.integrand, retract(rec.intvar)) + if u case ANS then + rc := u::ANS + ans := ans + rc.special + if rc.integrand ^= 0 then + ir0 := intPatternMatch(rc.integrand, x, int, pmint) + ans := ans + ratpart ir0 + lg := concat(logpart ir0, lg) + nl := concat(notelem ir0, nl) + else nl := concat(rec, nl) + mkAnswer(ans, lg, nl) + +@ +\section{package RDEEF ElementaryRischDE} +<<package RDEEF ElementaryRischDE>>= +)abbrev package RDEEF ElementaryRischDE +++ Risch differential equation, elementary case. +++ Author: Manuel Bronstein +++ Date Created: 1 February 1988 +++ Date Last Updated: 2 November 1995 +++ Keywords: elementary, function, integration. +ElementaryRischDE(R, F): Exports == Implementation where + R : Join(GcdDomain, OrderedSet, CharacteristicZero, + RetractableTo Integer, LinearlyExplicitRingOver Integer) + F : Join(TranscendentalFunctionCategory, AlgebraicallyClosedField, + FunctionSpace R) + + N ==> NonNegativeInteger + Z ==> Integer + SE ==> Symbol + LF ==> List F + K ==> Kernel F + LK ==> List K + P ==> SparseMultivariatePolynomial(R, K) + UP ==> SparseUnivariatePolynomial F + RF ==> Fraction UP + GP ==> LaurentPolynomial(F, UP) + Data ==> List Record(coeff:Z, argument:P) + RRF ==> Record(mainpart:F,limitedlogs:List NL) + NL ==> Record(coeff:F,logand:F) + U ==> Union(RRF, "failed") + UF ==> Union(F, "failed") + UUP ==> Union(UP, "failed") + UGP ==> Union(GP, "failed") + URF ==> Union(RF, "failed") + UEX ==> Union(Record(ratpart:F, coeff:F), "failed") + PSOL==> Record(ans:F, right:F, sol?:Boolean) + FAIL==> error("Function not supported by Risch d.e.") + ALGOP ==> "%alg" + + Exports ==> with + rischDE: (Z, F, F, SE, (F, LF) -> U, (F, F) -> UEX) -> PSOL + ++ rischDE(n, f, g, x, lim, ext) returns \spad{[y, h, b]} such that + ++ \spad{dy/dx + n df/dx y = h} and \spad{b := h = g}. + ++ The equation \spad{dy/dx + n df/dx y = g} has no solution + ++ if \spad{h \~~= g} (y is a partial solution in that case). + ++ Notes: lim is a limited integration function, and + ++ ext is an extended integration function. + + Implementation ==> add + import IntegrationTools(R, F) + import TranscendentalRischDE(F, UP) + import TranscendentalIntegration(F, UP) + import PureAlgebraicIntegration(R, F, F) + import FunctionSpacePrimitiveElement(R, F) + import ElementaryFunctionStructurePackage(R, F) + import PolynomialCategoryQuotientFunctions(IndexedExponents K, + K, R, P, F) + + RF2GP: RF -> GP + makeData : (F, SE, K) -> Data + normal0 : (Z, F, F, SE) -> UF + normalise0: (Z, F, F, SE) -> PSOL + normalise : (Z, F, F, F, SE, K, (F, LF) -> U, (F, F) -> UEX) -> PSOL + rischDEalg: (Z, F, F, F, K, LK, SE, (F, LF) -> U, (F, F) -> UEX) -> PSOL + rischDElog: (LK, RF, RF, SE, K, UP->UP,(F,LF)->U,(F,F)->UEX) -> URF + rischDEexp: (LK, RF, RF, SE, K, UP->UP,(F,LF)->U,(F,F)->UEX) -> URF + polyDElog : (LK, UP, UP,UP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UUP + polyDEexp : (LK, UP, UP,UP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UUP + gpolDEexp : (LK, UP, GP,GP,SE,K,UP->UP,(F,LF)->U,(F,F)->UEX) -> UGP + boundAt0 : (LK, F, Z, Z, SE, K, (F, LF) -> U) -> Z + boundInf : (LK, F, Z, Z, Z, SE, K, (F, LF) -> U) -> Z + logdegrad : (LK, F, UP, Z, SE, K,(F,LF)->U, (F,F) -> UEX) -> UUP + expdegrad : (LK, F, UP, Z, SE, K,(F,LF)->U, (F,F) -> UEX) -> UUP + logdeg : (UP, F, Z, SE, F, (F, LF) -> U, (F, F) -> UEX) -> UUP + expdeg : (UP, F, Z, SE, F, (F, LF) -> U, (F, F) -> UEX) -> UUP + exppolyint: (UP, (Z, F) -> PSOL) -> UUP + RRF2F : RRF -> F + logdiff : (List K, List K) -> List K + + tab:AssociationList(F, Data) := table() + + RF2GP f == (numer(f)::GP exquo denom(f)::GP)::GP + + logdiff(twr, bad) == + [u for u in twr | is?(u, "log"::SE) and not member?(u, bad)] + + rischDEalg(n, nfp, f, g, k, l, x, limint, extint) == + symbolIfCan(kx := ksec(k, l, x)) case SE => + (u := palgRDE(nfp, f, g, kx, k, normal0(n, #1, #2, #3))) case "failed" + => [0, 0, false] + [u::F, g, true] + has?(operator kx, ALGOP) => + rec := primitiveElement(kx::F, k::F) + y := rootOf(rec.prim) + lk:LK := [kx, k] + lv:LF := [(rec.pol1) y, (rec.pol2) y] + rc := rischDE(n, eval(f, lk, lv), eval(g, lk, lv), x, limint, extint) + rc.sol? => [eval(rc.ans, retract(y)@K, rec.primelt), rc.right, true] + [0, 0, false] + FAIL + +-- solve y' + n f'y = g for a rational function y + rischDE(n, f, g, x, limitedint, extendedint) == + zero? g => [0, g, true] + zero?(nfp := n * differentiate(f, x)) => + (u := limitedint(g, empty())) case "failed" => [0, 0, false] + [u.mainpart, g, true] + freeOf?(y := g / nfp, x) => [y, g, true] + vl := varselect(union(kernels nfp, kernels g), x) + symbolIfCan(k := kmax vl) case SE => normalise0(n, f, g, x) + is?(k, "log"::SE) or is?(k, "exp"::SE) => + normalise(n, nfp, f, g, x, k, limitedint, extendedint) + has?(operator k, ALGOP) => + rischDEalg(n, nfp, f, g, k, vl, x, limitedint, extendedint) + FAIL + + normal0(n, f, g, x) == + rec := normalise0(n, f, g, x) + rec.sol? => rec.ans + "failed" + +-- solve y' + n f' y = g +-- when f' and g are rational functions over a constant field + normalise0(n, f, g, x) == + k := kernel(x)@K + if (data1 := search(f, tab)) case "failed" then + tab.f := data := makeData(f, x, k) + else data := data1::Data + f' := nfprime := n * differentiate(f, x) + p:P := 1 + for v in data | (m := n * v.coeff) > 0 repeat + p := p * v.argument ** (m::N) + f' := f' - m * differentiate(v.argument::F, x) / (v.argument::F) + rec := baseRDE(univariate(f', k), univariate(p::F * g, k)) + y := multivariate(rec.ans, k) / p::F + rec.nosol => [y, differentiate(y, x) + nfprime * y, false] + [y, g, true] + +-- make f weakly normalized, and solve y' + n f' y = g + normalise(n, nfp, f, g, x, k, limitedint, extendedint) == + if (data1:= search(f, tab)) case "failed" then + tab.f := data := makeData(f, x, k) + else data := data1::Data + p:P := 1 + for v in data | (m := n * v.coeff) > 0 repeat + p := p * v.argument ** (m::N) + f := f - v.coeff * log(v.argument::F) + nfp := nfp - m * differentiate(v.argument::F, x) / (v.argument::F) + newf := univariate(nfp, k) + newg := univariate(p::F * g, k) + twr := union(logdiff(tower f, empty()), logdiff(tower g, empty())) + ans1 := + is?(k, "log"::SE) => + rischDElog(twr, newf, newg, x, k, + differentiate(#1, differentiate(#1, x), + differentiate(k::F, x)::UP), + limitedint, extendedint) + is?(k, "exp"::SE) => + rischDEexp(twr, newf, newg, x, k, + differentiate(#1, differentiate(#1, x), + monomial(differentiate(first argument k, x), 1)), + limitedint, extendedint) + ans1 case "failed" => [0, 0, false] + [multivariate(ans1::RF, k) / p::F, g, true] + +-- find the n * log(P) appearing in f, where P is in P, n in Z + makeData(f, x, k) == + disasters := empty()$Data + fnum := numer f + fden := denom f + for u in varselect(kernels f, x) | is?(u, "log"::SE) repeat + logand := first argument u + if zero?(degree univariate(fden, u)) and +-- one?(degree(num := univariate(fnum, u))) then + (degree(num := univariate(fnum, u)) = 1) then + cf := (leadingCoefficient num) / fden + if (n := retractIfCan(cf)@Union(Z, "failed")) case Z then + if degree(numer logand, k) > 0 then + disasters := concat([n::Z, numer logand], disasters) + if degree(denom logand, k) > 0 then + disasters := concat([-(n::Z), denom logand], disasters) + disasters + + rischDElog(twr, f, g, x, theta, driv, limint, extint) == + (u := monomRDE(f, g, driv)) case "failed" => "failed" + (v := polyDElog(twr, u.a, retract(u.b), retract(u.c), x, theta, driv, + limint, extint)) case "failed" => "failed" + v::UP / u.t + + rischDEexp(twr, f, g, x, theta, driv, limint, extint) == + (u := monomRDE(f, g, driv)) case "failed" => "failed" + (v := gpolDEexp(twr, u.a, RF2GP(u.b), RF2GP(u.c), x, theta, driv, + limint, extint)) case "failed" => "failed" + convert(v::GP)@RF / u.t::RF + + polyDElog(twr, aa, bb, cc, x, t, driv, limint, extint) == + zero? cc => 0 + t' := differentiate(t::F, x) + zero? bb => + (u := cc exquo aa) case "failed" => "failed" + primintfldpoly(u::UP, extint(#1, t'), t') + n := degree(cc)::Z - (db := degree(bb)::Z) + if ((da := degree(aa)::Z) = db) and (da > 0) then + lk0 := tower(f0 := + - (leadingCoefficient bb) / (leadingCoefficient aa)) + lk1 := logdiff(twr, lk0) + (if0 := limint(f0, [first argument u for u in lk1])) + case "failed" => error "Risch's theorem violated" + (alph := validExponential(lk0, RRF2F(if0::RRF), x)) case F => + return + (ans := polyDElog(twr, alph::F * aa, + differentiate(alph::F, x) * aa + alph::F * bb, + cc, x, t, driv, limint, extint)) case "failed" => "failed" + alph::F * ans::UP + if (da > db + 1) then n := max(0, degree(cc)::Z - da + 1) + if (da = db + 1) then + i := limint(- (leadingCoefficient bb) / (leadingCoefficient aa), + [first argument t]) + if not(i case "failed") then + r := + null(i.limitedlogs) => 0$F + i.limitedlogs.first.coeff + if (nn := retractIfCan(r)@Union(Z, "failed")) case Z then + n := max(nn::Z, n) + (v := polyRDE(aa, bb, cc, n, driv)) case ans => + v.ans.nosol => "failed" + v.ans.ans + w := v.eq + zero?(w.b) => + degree(w.c) > w.m => "failed" + (u := primintfldpoly(w.c, extint(#1,t'), t')) case "failed" => "failed" + degree(u::UP) > w.m => "failed" + w.alpha * u::UP + w.beta + (u := logdegrad(twr, retract(w.b), w.c, w.m, x, t, limint, extint)) + case "failed" => "failed" + w.alpha * u::UP + w.beta + + gpolDEexp(twr, a, b, c, x, t, driv, limint, extint) == + zero? c => 0 + zero? b => + (u := c exquo (a::GP)) case "failed" => "failed" + expintfldpoly(u::GP, + rischDE(#1, first argument t, #2, x, limint, extint)) + lb := boundAt0(twr, - coefficient(b, 0) / coefficient(a, 0), + nb := order b, nc := order c, x, t, limint) + tm := monomial(1, (m := max(0, max(-nb, lb - nc)))::N)$UP + (v := polyDEexp(twr,a * tm,lb * differentiate(first argument t, x) + * a * tm + retract(b * tm::GP)@UP, + retract(c * monomial(1, m - lb))@UP, + x, t, driv, limint, extint)) case "failed" => "failed" + v::UP::GP * monomial(1, lb) + + polyDEexp(twr, aa, bb, cc, x, t, driv, limint, extint) == + zero? cc => 0 + zero? bb => + (u := cc exquo aa) case "failed" => "failed" + exppolyint(u::UP, rischDE(#1, first argument t, #2, x, limint, extint)) + n := boundInf(twr,-leadingCoefficient(bb) / (leadingCoefficient aa), + degree(aa)::Z, degree(bb)::Z, degree(cc)::Z, x, t, limint) + (v := polyRDE(aa, bb, cc, n, driv)) case ans => + v.ans.nosol => "failed" + v.ans.ans + w := v.eq + zero?(w.b) => + degree(w.c) > w.m => "failed" + (u := exppolyint(w.c, + rischDE(#1, first argument t, #2, x, limint, extint))) + case "failed" => "failed" + w.alpha * u::UP + w.beta + (u := expdegrad(twr, retract(w.b), w.c, w.m, x, t, limint, extint)) + case "failed" => "failed" + w.alpha * u::UP + w.beta + + exppolyint(p, rischdiffeq) == + (u := expintfldpoly(p::GP, rischdiffeq)) case "failed" => "failed" + retractIfCan(u::GP)@Union(UP, "failed") + + boundInf(twr, f0, da, db, dc, x, t, limitedint) == + da < db => dc - db + da > db => max(0, dc - da) + l1 := logdiff(twr, l0 := tower f0) + (if0 := limitedint(f0, [first argument u for u in l1])) + case "failed" => error "Risch's theorem violated" + (alpha := validExponential(concat(t, l0), RRF2F(if0::RRF), x)) + case F => + al := separate(univariate(alpha::F, t))$GP + zero?(al.fracPart) and monomial?(al.polyPart) => + max(0, max(degree(al.polyPart), dc - db)) + dc - db + dc - db + + boundAt0(twr, f0, nb, nc, x, t, limitedint) == + nb ^= 0 => min(0, nc - min(0, nb)) + l1 := logdiff(twr, l0 := tower f0) + (if0 := limitedint(f0, [first argument u for u in l1])) + case "failed" => error "Risch's theorem violated" + (alpha := validExponential(concat(t, l0), RRF2F(if0::RRF), x)) + case F => + al := separate(univariate(alpha::F, t))$GP + zero?(al.fracPart) and monomial?(al.polyPart) => + min(0, min(degree(al.polyPart), nc)) + min(0, nc) + min(0, nc) + +-- case a = 1, deg(B) = 0, B <> 0 +-- cancellation at infinity is possible + logdegrad(twr, b, c, n, x, t, limitedint, extint) == + t' := differentiate(t::F, x) + lk1 := logdiff(twr, lk0 := tower(f0 := - b)) + (if0 := limitedint(f0, [first argument u for u in lk1])) + case "failed" => error "Risch's theorem violated" + (alpha := validExponential(lk0, RRF2F(if0::RRF), x)) case F => + (u1 := primintfldpoly(inv(alpha::F) * c, extint(#1, t'), t')) + case "failed" => "failed" + degree(u1::UP)::Z > n => "failed" + alpha::F * u1::UP + logdeg(c, - if0.mainpart - + +/[v.coeff * log(v.logand) for v in if0.limitedlogs], + n, x, t', limitedint, extint) + +-- case a = 1, degree(b) = 0, and (exp integrate b) is not in F +-- this implies no cancellation at infinity + logdeg(c, f, n, x, t', limitedint, extint) == + answr:UP := 0 + repeat + zero? c => return answr + (n < 0) or ((m := degree c)::Z > n) => return "failed" + u := rischDE(1, f, leadingCoefficient c, x, limitedint, extint) + ~u.sol? => return "failed" + zero? m => return(answr + u.ans::UP) + n := m::Z - 1 + c := (reductum c) - monomial(m::Z * t' * u.ans, (m - 1)::N) + answr := answr + monomial(u.ans, m) + +-- case a = 1, deg(B) = 0, B <> 0 +-- cancellation at infinity is possible + expdegrad(twr, b, c, n, x, t, limint, extint) == + lk1 := logdiff(twr, lk0 := tower(f0 := - b)) + (if0 := limint(f0, [first argument u for u in lk1])) + case "failed" => error "Risch's theorem violated" + intf0 := - if0.mainpart - + +/[v.coeff * log(v.logand) for v in if0.limitedlogs] + (alpha := validExponential(concat(t, lk0), RRF2F(if0::RRF), x)) + case F => + al := separate(univariate(alpha::F, t))$GP + zero?(al.fracPart) and monomial?(al.polyPart) and + (degree(al.polyPart) >= 0) => + (u1 := expintfldpoly(c::GP * recip(al.polyPart)::GP, + rischDE(#1, first argument t, #2, x, limint, extint))) + case "failed" => "failed" + degree(u1::GP) > n => "failed" + retractIfCan(al.polyPart * u1::GP)@Union(UP, "failed") + expdeg(c, intf0, n, x, first argument t, limint,extint) + expdeg(c, intf0, n, x, first argument t, limint, extint) + +-- case a = 1, degree(b) = 0, and (exp integrate b) is not a monomial +-- this implies no cancellation at infinity + expdeg(c, f, n, x, eta, limitedint, extint) == + answr:UP := 0 + repeat + zero? c => return answr + (n < 0) or ((m := degree c)::Z > n) => return "failed" + u := rischDE(1, f + m * eta, leadingCoefficient c, x,limitedint,extint) + ~u.sol? => return "failed" + zero? m => return(answr + u.ans::UP) + n := m::Z - 1 + c := reductum c + answr := answr + monomial(u.ans, m) + + RRF2F rrf == + rrf.mainpart + +/[v.coeff*log(v.logand) for v in rrf.limitedlogs] + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +-- SPAD files for the integration world should be compiled in the +-- following order: +-- +-- intaux rderf intrf curve curvepkg divisor pfo +-- intalg intaf efstruc RDEEF intef irexpand integrat + +<<package INTTOOLS IntegrationTools>> +<<package RDEEF ElementaryRischDE>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |