aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/primelt.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/primelt.spad.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/algebra/primelt.spad.pamphlet')
-rw-r--r--src/algebra/primelt.spad.pamphlet269
1 files changed, 269 insertions, 0 deletions
diff --git a/src/algebra/primelt.spad.pamphlet b/src/algebra/primelt.spad.pamphlet
new file mode 100644
index 00000000..baee4e62
--- /dev/null
+++ b/src/algebra/primelt.spad.pamphlet
@@ -0,0 +1,269 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra primelt.spad}
+\author{Manuel Bronstein}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{package PRIMELT PrimitiveElement}
+<<package PRIMELT PrimitiveElement>>=
+)abbrev package PRIMELT PrimitiveElement
+++ Computation of primitive elements.
+++ Author: Manuel Bronstein
+++ Date Created: 6 Jun 1990
+++ Date Last Updated: 25 April 1991
+++ Description:
+++ PrimitiveElement provides functions to compute primitive elements
+++ in algebraic extensions;
+++ Keywords: algebraic, extension, primitive.
+PrimitiveElement(F): Exports == Implementation where
+ F : Join(Field, CharacteristicZero)
+
+ SY ==> Symbol
+ P ==> Polynomial F
+ UP ==> SparseUnivariatePolynomial F
+ RC ==> Record(coef1: Integer, coef2: Integer, prim:UP)
+ REC ==> Record(coef: List Integer, poly:List UP, prim: UP)
+
+ Exports ==> with
+ primitiveElement: (P, SY, P, SY) -> RC
+ ++ primitiveElement(p1, a1, p2, a2) returns \spad{[c1, c2, q]}
+ ++ such that \spad{k(a1, a2) = k(a)}
+ ++ where \spad{a = c1 a1 + c2 a2, and q(a) = 0}.
+ ++ The pi's are the defining polynomials for the ai's.
+ ++ The p2 may involve a1, but p1 must not involve a2.
+ ++ This operation uses \spadfun{resultant}.
+ primitiveElement: (List P, List SY) -> REC
+ ++ primitiveElement([p1,...,pn], [a1,...,an]) returns
+ ++ \spad{[[c1,...,cn], [q1,...,qn], q]}
+ ++ such that then \spad{k(a1,...,an) = k(a)},
+ ++ where \spad{a = a1 c1 + ... + an cn},
+ ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}.
+ ++ The pi's are the defining polynomials for the ai's.
+ ++ This operation uses the technique of
+ ++ \spadglossSee{groebner bases}{Groebner basis}.
+ primitiveElement: (List P, List SY, SY) -> REC
+ ++ primitiveElement([p1,...,pn], [a1,...,an], a) returns
+ ++ \spad{[[c1,...,cn], [q1,...,qn], q]}
+ ++ such that then \spad{k(a1,...,an) = k(a)},
+ ++ where \spad{a = a1 c1 + ... + an cn},
+ ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}.
+ ++ The pi's are the defining polynomials for the ai's.
+ ++ This operation uses the technique of
+ ++ \spadglossSee{groebner bases}{Groebner basis}.
+
+ Implementation ==> add
+ import PolyGroebner(F)
+
+ multi : (UP, SY) -> P
+ randomInts: (NonNegativeInteger, NonNegativeInteger) -> List Integer
+ findUniv : (List P, SY, SY) -> Union(P, "failed")
+ incl? : (List SY, List SY) -> Boolean
+ triangularLinearIfCan:(List P,List SY,SY) -> Union(List UP,"failed")
+ innerPrimitiveElement: (List P, List SY, SY) -> REC
+
+ multi(p, v) == multivariate(map(#1, p), v)
+ randomInts(n, m) == [symmetricRemainder(random()$Integer, m) for i in 1..n]
+ incl?(a, b) == every?(member?(#1, b), a)
+ primitiveElement(l, v) == primitiveElement(l, v, new()$SY)
+
+ primitiveElement(p1, a1, p2, a2) ==
+-- one? degree(p2, a1) => [0, 1, univariate resultant(p1, p2, a1)]
+ (degree(p2, a1) = 1) => [0, 1, univariate resultant(p1, p2, a1)]
+ u := (new()$SY)::P
+ b := a2::P
+ for i in 10.. repeat
+ c := symmetricRemainder(random()$Integer, i)
+ w := u - c * b
+ r := univariate resultant(eval(p1, a1, w), eval(p2, a1, w), a2)
+ not zero? r and r = squareFreePart r => return [1, c, r]
+
+ findUniv(l, v, opt) ==
+ for p in l repeat
+ degree(p, v) > 0 and incl?(variables p, [v, opt]) => return p
+ "failed"
+
+ triangularLinearIfCan(l, lv, w) ==
+ (u := findUniv(l, w, w)) case "failed" => "failed"
+ pw := univariate(u::P)
+ ll := nil()$List(UP)
+ for v in lv repeat
+ ((u := findUniv(l, v, w)) case "failed") or
+ (degree(p := univariate(u::P, v)) ^= 1) => return "failed"
+ (bc := extendedEuclidean(univariate leadingCoefficient p, pw,1))
+ case "failed" => error "Should not happen"
+ ll := concat(map(#1,
+ (- univariate(coefficient(p,0)) * bc.coef1) rem pw), ll)
+ concat(map(#1, pw), reverse_! ll)
+
+ primitiveElement(l, vars, uu) ==
+ u := uu::P
+ vv := [v::P for v in vars]
+ elim := concat(vars, uu)
+ w := uu::P
+ n := #l
+ for i in 10.. repeat
+ cf := randomInts(n, i)
+ (tt := triangularLinearIfCan(lexGroebner(
+ concat(w - +/[c * t for c in cf for t in vv], l), elim),
+ vars, uu)) case List(UP) =>
+ ltt := tt::List(UP)
+ return([cf, rest ltt, first ltt])
+
+@
+\section{package FSPRMELT FunctionSpacePrimitiveElement}
+<<package FSPRMELT FunctionSpacePrimitiveElement>>=
+)abbrev package FSPRMELT FunctionSpacePrimitiveElement
+++ Computation of primitive elements.
+++ Author: Manuel Bronstein
+++ Date Created: 6 Jun 1990
+++ Date Last Updated: 25 April 1991
+++ Description:
+++ FunctionsSpacePrimitiveElement provides functions to compute
+++ primitive elements in functions spaces;
+++ Keywords: algebraic, extension, primitive.
+FunctionSpacePrimitiveElement(R, F): Exports == Implementation where
+ R: Join(IntegralDomain, OrderedSet, CharacteristicZero)
+ F: FunctionSpace R
+
+ SY ==> Symbol
+ P ==> Polynomial F
+ K ==> Kernel F
+ UP ==> SparseUnivariatePolynomial F
+ REC ==> Record(primelt:F, poly:List UP, prim:UP)
+
+ Exports ==> with
+ primitiveElement: List F -> Record(primelt:F, poly:List UP, prim:UP)
+ ++ primitiveElement([a1,...,an]) returns \spad{[a, [q1,...,qn], q]}
+ ++ such that then \spad{k(a1,...,an) = k(a)},
+ ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}.
+ ++ This operation uses the technique of
+ ++ \spadglossSee{groebner bases}{Groebner basis}.
+ if F has AlgebraicallyClosedField then
+ primitiveElement: (F,F)->Record(primelt:F,pol1:UP,pol2:UP,prim:UP)
+ ++ primitiveElement(a1, a2) returns \spad{[a, q1, q2, q]}
+ ++ such that \spad{k(a1, a2) = k(a)},
+ ++ \spad{ai = qi(a)}, and \spad{q(a) = 0}.
+ ++ The minimal polynomial for a2 may involve a1, but the
+ ++ minimal polynomial for a1 may not involve a2;
+ ++ This operations uses \spadfun{resultant}.
+
+ Implementation ==> add
+ import PrimitiveElement(F)
+ import AlgebraicManipulations(R, F)
+ import PolynomialCategoryLifting(IndexedExponents K,
+ K, R, SparseMultivariatePolynomial(R, K), P)
+
+ F2P: (F, List SY) -> P
+ K2P: (K, List SY) -> P
+
+ F2P(f, l) == inv(denom(f)::F) * map(K2P(#1, l), #1::F::P, numer f)
+
+ K2P(k, l) ==
+ ((v := symbolIfCan k) case SY) and member?(v::SY, l) => v::SY::P
+ k::F::P
+
+ primitiveElement l ==
+ u := string(uu := new()$SY)
+ vars := [concat(u, string i)::SY for i in 1..#l]
+ vv := [kernel(v)$K :: F for v in vars]
+ kers := [retract(a)@K for a in l]
+ pols := [F2P(subst(ratDenom((minPoly k) v, kers), kers, vv), vars)
+ for k in kers for v in vv]
+ rec := primitiveElement(pols, vars, uu)
+ [+/[c * a for c in rec.coef for a in l], rec.poly, rec.prim]
+
+ if F has AlgebraicallyClosedField then
+ import PolynomialCategoryQuotientFunctions(IndexedExponents K,
+ K, R, SparseMultivariatePolynomial(R, K), F)
+
+ F2UP: (UP, K, UP) -> UP
+ getpoly: (UP, F) -> UP
+
+ F2UP(p, k, q) ==
+ ans:UP := 0
+ while not zero? p repeat
+ f := univariate(leadingCoefficient p, k)
+ ans := ans + ((numer f) q)
+ * monomial(inv(retract(denom f)@F), degree p)
+ p := reductum p
+ ans
+
+ primitiveElement(a1, a2) ==
+ a := (aa := new()$SY)::F
+ b := (bb := new()$SY)::F
+ l := [aa, bb]$List(SY)
+ p1 := minPoly(k1 := retract(a1)@K)
+ p2 := map(subst(ratDenom(#1, [k1]), [k1], [a]),
+ minPoly(retract(a2)@K))
+ rec := primitiveElement(F2P(p1 a, l), aa, F2P(p2 b, l), bb)
+ w := rec.coef1 * a1 + rec.coef2 * a2
+ g := rootOf(rec.prim)
+ zero?(rec.coef1) =>
+ c2g := inv(rec.coef2 :: F) * g
+ r := gcd(p1, univariate(p2 c2g, retract(a)@K, p1))
+ q := getpoly(r, g)
+ [w, q, rec.coef2 * monomial(1, 1)$UP, rec.prim]
+ ic1 := inv(rec.coef1 :: F)
+ gg := (ic1 * g)::UP - monomial(rec.coef2 * ic1, 1)$UP
+ kg := retract(g)@K
+ r := gcd(p1 gg, F2UP(p2, retract(a)@K, gg))
+ q := getpoly(r, g)
+ [w, monomial(ic1, 1)$UP - rec.coef2 * ic1 * q, q, rec.prim]
+
+ getpoly(r, g) ==
+-- one? degree r =>
+ (degree r = 1) =>
+ k := retract(g)@K
+ univariate(-coefficient(r,0)/leadingCoefficient r,k,minPoly k)
+ error "GCD not of degree 1"
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+<<package PRIMELT PrimitiveElement>>
+<<package FSPRMELT FunctionSpacePrimitiveElement>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}