aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/polycat.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2011-03-12 19:17:32 +0000
committerdos-reis <gdr@axiomatics.org>2011-03-12 19:17:32 +0000
commitc93e84048964194e5674e859d6bd8827010f09f6 (patch)
tree407ca23d232bf3f974550fce0175c49495ef49c0 /src/algebra/polycat.spad.pamphlet
parent52fddea19454dc2b9bcb54c6edd5a4cd4f5765a9 (diff)
downloadopen-axiom-c93e84048964194e5674e859d6bd8827010f09f6.tar.gz
* src/algebra/: Systematically use negative? when comparing for
greater than 0.
Diffstat (limited to 'src/algebra/polycat.spad.pamphlet')
-rw-r--r--src/algebra/polycat.spad.pamphlet8
1 files changed, 4 insertions, 4 deletions
diff --git a/src/algebra/polycat.spad.pamphlet b/src/algebra/polycat.spad.pamphlet
index 140fc069..d3107611 100644
--- a/src/algebra/polycat.spad.pamphlet
+++ b/src/algebra/polycat.spad.pamphlet
@@ -538,7 +538,7 @@ PolynomialCategory(R:Ring, E:OrderedAbelianMonoidSup, VarSet:OrderedSet):
vars:=rest vars
d:=degree(p,v)
ans:% := 0
- while (d>0) repeat
+ while positive? d repeat
(dd:=(d::Integer exquo ch::Integer)) case "failed" =>
return nothing
cp:=coefficient(p,v,d)
@@ -880,7 +880,7 @@ UnivariatePolynomialCategory(R:Ring): Category ==
if R has CommutativeRing then
differentiate(x:%, deriv:R -> R, x':%) ==
d:% := 0
- while (dg := degree x) > 0 repeat
+ while positive?(dg := degree x) repeat
lc := leadingCoefficient x
d := d + x' * monomial(dg * lc, (dg - 1)::NonNegativeInteger)
+ monomial(deriv lc, dg)
@@ -896,7 +896,7 @@ UnivariatePolynomialCategory(R:Ring): Category ==
differentiate(x:%, deriv:R -> R, x':%) ==
d:% := 0
- while (dg := degree x) > 0 repeat
+ while positive?(dg := degree x) repeat
lc := leadingCoefficient x
d := d + monomial(deriv lc, dg) + lc * ncdiff(dg, x')
x := reductum x
@@ -904,7 +904,7 @@ UnivariatePolynomialCategory(R:Ring): Category ==
differentiate(x:%, deriv:R -> R) == differentiate(x, deriv, 1$%)$%
differentiate(x:%) ==
d:% := 0
- while (dg := degree x) > 0 repeat
+ while positive?(dg := degree x) repeat
d := d + monomial(dg * leadingCoefficient x, (dg - 1)::NonNegativeInteger)
x := reductum x
d