diff options
| author | dos-reis <gdr@axiomatics.org> | 2011-03-12 19:17:32 +0000 |
|---|---|---|
| committer | dos-reis <gdr@axiomatics.org> | 2011-03-12 19:17:32 +0000 |
| commit | c93e84048964194e5674e859d6bd8827010f09f6 (patch) | |
| tree | 407ca23d232bf3f974550fce0175c49495ef49c0 /src/algebra/polycat.spad.pamphlet | |
| parent | 52fddea19454dc2b9bcb54c6edd5a4cd4f5765a9 (diff) | |
| download | open-axiom-c93e84048964194e5674e859d6bd8827010f09f6.tar.gz | |
* src/algebra/: Systematically use negative? when comparing for
greater than 0.
Diffstat (limited to 'src/algebra/polycat.spad.pamphlet')
| -rw-r--r-- | src/algebra/polycat.spad.pamphlet | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/src/algebra/polycat.spad.pamphlet b/src/algebra/polycat.spad.pamphlet index 140fc069..d3107611 100644 --- a/src/algebra/polycat.spad.pamphlet +++ b/src/algebra/polycat.spad.pamphlet @@ -538,7 +538,7 @@ PolynomialCategory(R:Ring, E:OrderedAbelianMonoidSup, VarSet:OrderedSet): vars:=rest vars d:=degree(p,v) ans:% := 0 - while (d>0) repeat + while positive? d repeat (dd:=(d::Integer exquo ch::Integer)) case "failed" => return nothing cp:=coefficient(p,v,d) @@ -880,7 +880,7 @@ UnivariatePolynomialCategory(R:Ring): Category == if R has CommutativeRing then differentiate(x:%, deriv:R -> R, x':%) == d:% := 0 - while (dg := degree x) > 0 repeat + while positive?(dg := degree x) repeat lc := leadingCoefficient x d := d + x' * monomial(dg * lc, (dg - 1)::NonNegativeInteger) + monomial(deriv lc, dg) @@ -896,7 +896,7 @@ UnivariatePolynomialCategory(R:Ring): Category == differentiate(x:%, deriv:R -> R, x':%) == d:% := 0 - while (dg := degree x) > 0 repeat + while positive?(dg := degree x) repeat lc := leadingCoefficient x d := d + monomial(deriv lc, dg) + lc * ncdiff(dg, x') x := reductum x @@ -904,7 +904,7 @@ UnivariatePolynomialCategory(R:Ring): Category == differentiate(x:%, deriv:R -> R) == differentiate(x, deriv, 1$%)$% differentiate(x:%) == d:% := 0 - while (dg := degree x) > 0 repeat + while positive?(dg := degree x) repeat d := d + monomial(dg * leadingCoefficient x, (dg - 1)::NonNegativeInteger) x := reductum x d |
