aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/poly.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2008-04-03 04:23:42 +0000
committerdos-reis <gdr@axiomatics.org>2008-04-03 04:23:42 +0000
commit001e19b08ba7fb1b9e6f6bdb44a82ba3db3fc532 (patch)
treeda9e2fe5d81ff4cd7709d12e44b8c3e348b8a8e3 /src/algebra/poly.spad.pamphlet
parenta7bab9a6c2070d05e2dbd256ce455079c8ced385 (diff)
downloadopen-axiom-001e19b08ba7fb1b9e6f6bdb44a82ba3db3fc532.tar.gz
Replace `^=' with `~='.
Diffstat (limited to 'src/algebra/poly.spad.pamphlet')
-rw-r--r--src/algebra/poly.spad.pamphlet28
1 files changed, 14 insertions, 14 deletions
diff --git a/src/algebra/poly.spad.pamphlet b/src/algebra/poly.spad.pamphlet
index ad0206cd..fe9eb615 100644
--- a/src/algebra/poly.spad.pamphlet
+++ b/src/algebra/poly.spad.pamphlet
@@ -54,7 +54,7 @@ FreeModule(R:Ring,S:OrderedSet):
-- one? r => x
(r = 1) => x
--map(r*#1,x)
- [[u.k,a] for u in x | (a:=r*u.c) ^= 0$R]
+ [[u.k,a] for u in x | (a:=r*u.c) ~= 0$R]
if R has EntireRing then
x * r ==
zero? r => 0
@@ -68,7 +68,7 @@ FreeModule(R:Ring,S:OrderedSet):
-- one? r => x
(r = 1) => x
--map(r*#1,x)
- [[u.k,a] for u in x | (a:=u.c*r) ^= 0$R]
+ [[u.k,a] for u in x | (a:=u.c*r) ~= 0$R]
coerce(x) : OutputForm ==
null x => (0$R) :: OutputForm
@@ -288,7 +288,7 @@ PolynomialRing(R:Ring,E:OrderedAbelianMonoid): T == C
-- null p2 => 0
-- zero?(p1.first.k) => p1.first.c * p2
-- one? p2 => p1
--- +/[[[t1.k+t2.k,r]$Term for t2 in p2 | (r:=t1.c*t2.c) ^= 0]
+-- +/[[[t1.k+t2.k,r]$Term for t2 in p2 | (r:=t1.c*t2.c) ~= 0]
-- for t1 in reverse(p1)]
-- -- This 'reverse' is an efficiency improvement:
-- -- reduces both time and space [Abbott/Bradford/Davenport]
@@ -348,7 +348,7 @@ PolynomialRing(R:Ring,E:OrderedAbelianMonoid): T == C
while not null p1 and p1.first.k > e2 repeat
(rout:=[p1.first,:rout]; p1:=p1.rest) --use PUSH and POP?
null p1 or p1.first.k < e2 => rout:=[[e2,c2],:rout]
- if (u:=p1.first.c + c2) ^= 0 then rout:=[[e2, u],:rout]
+ if (u:=p1.first.c + c2) ~= 0 then rout:=[[e2, u],:rout]
p1:=p1.rest
NRECONC(rout,p1)$Lisp
if R has approximate then
@@ -501,7 +501,7 @@ SparseUnivariatePolynomial(R:Ring): UnivariatePolynomialCategory(R) with
while not null p1 and p1.first.k > e2 repeat
(rout:=[p1.first,:rout]; p1:=p1.rest) --use PUSH and POP?
null p1 or p1.first.k < e2 => rout:=[[e2,c2],:rout]
- if (u:=p1.first.c + c2) ^= 0 then rout:=[[e2, u],:rout]
+ if (u:=p1.first.c + c2) ~= 0 then rout:=[[e2, u],:rout]
p1:=p1.rest
NRECONC(rout,p1)$Lisp
@@ -600,7 +600,7 @@ SparseUnivariatePolynomial(R:Ring): UnivariatePolynomialCategory(R) with
while not null p1 and p1.first.k > e2 repeat
(rout:=[p1.first,:rout]; p1:=p1.rest) --use PUSH and POP?
null p1 or p1.first.k < e2 => rout:=[[e2,c2],:rout]
- if (u:=p1.first.c + c2) ^= 0 then rout:=[[e2, u],:rout]
+ if (u:=p1.first.c + c2) ~= 0 then rout:=[[e2, u],:rout]
p1:=p1.rest
NRECONC(rout,p1)$Lisp
pseudoRemainder(p1,p2) ==
@@ -651,7 +651,7 @@ SparseUnivariatePolynomial(R:Ring): UnivariatePolynomialCategory(R) with
monicDivide(p1:%,p2:%) ==
null p2 => error "monicDivide: division by 0"
- leadingCoefficient p2 ^= 1 => error "Divisor Not Monic"
+ leadingCoefficient p2 ~= 1 => error "Divisor Not Monic"
p2 = 1 => [p1,0]
null p1 => [0,0]
degree p1 < (n:=degree p2) => [0,p1]
@@ -679,7 +679,7 @@ SparseUnivariatePolynomial(R:Ring): UnivariatePolynomialCategory(R) with
-- p:=pseudoRemainder(p1,p2)
-- co:=1$R;
-- e:= (p1.first.k - p2.first.k):NonNegativeInteger
--- while not null p and p.first.k ^= 0 repeat
+-- while not null p and p.first.k ~= 0 repeat
-- p1:=p2; p2:=p; p:=pseudoRemainder(p1,p2)
-- null p or p.first.k = 0 => "enuf"
-- co:=(p1.first.c ** e exquo co ** max(0, (e-1))::NonNegativeInteger)::R
@@ -727,7 +727,7 @@ SparseUnivariatePolynomial(R:Ring): UnivariatePolynomialCategory(R) with
n:=p2.first.k
p2:=p2.rest
rout:=empty()$List(Term)
- while p1 ^= 0 repeat
+ while p1 ~= 0 repeat
(u:=subtractIfCan(p1.first.k, n)) case "failed" => leave
rout:=[[u, ct * p1.first.c], :rout]
p1:=fmecg(p1.rest, rout.first.k, rout.first.c, p2)
@@ -938,7 +938,7 @@ UnivariatePolynomialSquareFree(RC:IntegralDomain,P):C == T
makeFR(u,[["sqfr",c,1]])
i:NonNegativeInteger:=0; lffe:List FF:=[]
lcp := leadingCoefficient p
- while degree(ci)^=0 repeat
+ while degree(ci)~=0 repeat
ci:=(ci exquo pi)::P
di:=(di exquo pi)::P - differentiate(ci)
pi:=gcd(ci,di)
@@ -960,7 +960,7 @@ UnivariatePolynomialSquareFree(RC:IntegralDomain,P):C == T
di := (p exquo ci)::P
i:NonNegativeInteger:=0; lffe:List FF:=[]
dunit : P := 1
- while degree(di)^=0 repeat
+ while degree(di)~=0 repeat
diprev := di
di := gcd(ci,di)
ci:=(ci exquo di)::P
@@ -1081,7 +1081,7 @@ PolynomialSquareFree(VarSet:OrderedSet,E,RC:GcdDomain,P):C == T where
cont1:=cont1*((unit listfin1)**uexp)
pfaclist:=append(flistfin1,pfaclist)
cont:=cont*cont1
- cont ^= 1 =>
+ cont ~= 1 =>
sqp := squareFree cont
pfaclist:= append (factorList sqp,pfaclist)
makeFR(unit(sqp)*coefficient(unit squf,0),pfaclist)
@@ -1090,7 +1090,7 @@ PolynomialSquareFree(VarSet:OrderedSet,E,RC:GcdDomain,P):C == T where
squareFree(p:P) ==
mv:=mainVariable p
mv case "failed" => makeFR(p,[])$Factored(P)
- characteristic$RC ^=0 => finSqFr(p,variables p)
+ characteristic$RC ~=0 => finSqFr(p,variables p)
up:=univariate(p,mv)
cont := content up
up := (up exquo cont)::SUP
@@ -1098,7 +1098,7 @@ PolynomialSquareFree(VarSet:OrderedSet,E,RC:GcdDomain,P):C == T where
pfaclist:List FF :=
[[u.flg,multivariate(u.fctr,mv),u.xpnt]
for u in factorList squp]
- cont ^= 1 =>
+ cont ~= 1 =>
sqp := squareFree cont
makeFR(unit(sqp)*coefficient(unit squp,0),
append(factorList sqp, pfaclist))