aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/plot.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/plot.spad.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/algebra/plot.spad.pamphlet')
-rw-r--r--src/algebra/plot.spad.pamphlet651
1 files changed, 651 insertions, 0 deletions
diff --git a/src/algebra/plot.spad.pamphlet b/src/algebra/plot.spad.pamphlet
new file mode 100644
index 00000000..ea92ae66
--- /dev/null
+++ b/src/algebra/plot.spad.pamphlet
@@ -0,0 +1,651 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra plot.spad}
+\author{Michael Monagan, Clifton J. Williamson, Jon Steinbach, Manuel Bronstein}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{domain PLOT Plot}
+<<domain PLOT Plot>>=
+)abbrev domain PLOT Plot
+++ Author: Michael Monagan (revised by Clifton J. Williamson)
+++ Date Created: Jan 1988
+++ Date Last Updated: 30 Nov 1990 by Jonathan Steinbach
+++ Basic Operations: plot, pointPlot, plotPolar, parametric?, zoom, refine,
+++ tRange, minPoints, setMinPoints, maxPoints, screenResolution, adaptive?,
+++ setAdaptive, numFunEvals, debug
+++ Related Constructors:
+++ Also See:
+++ AMS Classifications:
+++ Keywords: plot, function, parametric
+++ References:
+++ Description: The Plot domain supports plotting of functions defined over a
+++ real number system. A real number system is a model for the real
+++ numbers and as such may be an approximation. For example
+++ floating point numbers and infinite continued fractions.
+++ The facilities at this point are limited to 2-dimensional plots
+++ or either a single function or a parametric function.
+Plot(): Exports == Implementation where
+ B ==> Boolean
+ F ==> DoubleFloat
+ I ==> Integer
+ L ==> List
+ N ==> NonNegativeInteger
+ OUT ==> OutputForm
+ P ==> Point F
+ RN ==> Fraction Integer
+ S ==> String
+ SEG ==> Segment
+ R ==> Segment F
+ C ==> Record(source: F -> P,ranges: L R,knots: L F,points: L P)
+
+ Exports ==> PlottablePlaneCurveCategory with
+
+--% function plots
+
+ plot: (F -> F,R) -> %
+ ++ plot(f,a..b) plots the function \spad{f(x)} on the interval \spad{[a,b]}.
+ plot: (F -> F,R,R) -> %
+ ++ plot(f,a..b,c..d) plots the function \spad{f(x)} on the interval
+ ++ \spad{[a,b]}; y-range of \spad{[c,d]} is noted in Plot object.
+
+--% multiple function plots
+
+ plot: (L(F -> F),R) -> %
+ ++ plot([f1,...,fm],a..b) plots the functions \spad{y = f1(x)},...,
+ ++ \spad{y = fm(x)} on the interval \spad{a..b}.
+ plot: (L(F -> F),R,R) -> %
+ ++ plot([f1,...,fm],a..b,c..d) plots the functions \spad{y = f1(x)},...,
+ ++ \spad{y = fm(x)} on the interval \spad{a..b}; y-range of \spad{[c,d]} is
+ ++ noted in Plot object.
+
+--% parametric plots
+
+ plot: (F -> F,F -> F,R) -> %
+ ++ plot(f,g,a..b) plots the parametric curve \spad{x = f(t)}, \spad{y = g(t)}
+ ++ as t ranges over the interval \spad{[a,b]}.
+ plot: (F -> F,F -> F,R,R,R) -> %
+ ++ plot(f,g,a..b,c..d,e..f) plots the parametric curve \spad{x = f(t)},
+ ++ \spad{y = g(t)} as t ranges over the interval \spad{[a,b]}; x-range
+ ++ of \spad{[c,d]} and y-range of \spad{[e,f]} are noted in Plot object.
+
+--% parametric plots
+
+ pointPlot: (F -> P,R) -> %
+ ++ pointPlot(t +-> (f(t),g(t)),a..b) plots the parametric curve
+ ++ \spad{x = f(t)}, \spad{y = g(t)} as t ranges over the interval \spad{[a,b]}.
+ pointPlot: (F -> P,R,R,R) -> %
+ ++ pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f) plots the parametric
+ ++ curve \spad{x = f(t)}, \spad{y = g(t)} as t ranges over the interval \spad{[a,b]};
+ ++ x-range of \spad{[c,d]} and y-range of \spad{[e,f]} are noted in Plot object.
+
+--% polar plots
+
+ plotPolar: (F -> F,R) -> %
+ ++ plotPolar(f,a..b) plots the polar curve \spad{r = f(theta)} as
+ ++ theta ranges over the interval \spad{[a,b]}; this is the same as
+ ++ the parametric curve \spad{x = f(t) * cos(t)}, \spad{y = f(t) * sin(t)}.
+
+ plotPolar: (F -> F) -> %
+ ++ plotPolar(f) plots the polar curve \spad{r = f(theta)} as theta
+ ++ ranges over the interval \spad{[0,2*%pi]}; this is the same as
+ ++ the parametric curve \spad{x = f(t) * cos(t)}, \spad{y = f(t) * sin(t)}.
+
+ plot: (%,R) -> % -- change the range
+ ++ plot(x,r) \undocumented
+ parametric?: % -> B
+ ++ parametric? determines whether it is a parametric plot?
+
+ zoom: (%,R) -> %
+ ++ zoom(x,r) \undocumented
+ zoom: (%,R,R) -> %
+ ++ zoom(x,r,s) \undocumented
+ refine: (%,R) -> %
+ ++ refine(x,r) \undocumented
+ refine: % -> %
+ ++ refine(p) performs a refinement on the plot p
+
+ tRange: % -> R
+ ++ tRange(p) returns the range of the parameter in a parametric plot p
+
+ minPoints: () -> I
+ ++ minPoints() returns the minimum number of points in a plot
+ setMinPoints: I -> I
+ ++ setMinPoints(i) sets the minimum number of points in a plot to i
+ maxPoints: () -> I
+ ++ maxPoints() returns the maximum number of points in a plot
+ setMaxPoints: I -> I
+ ++ setMaxPoints(i) sets the maximum number of points in a plot to i
+ screenResolution: () -> I
+ ++ screenResolution() returns the screen resolution
+ setScreenResolution: I -> I
+ ++ setScreenResolution(i) sets the screen resolution to i
+ adaptive?: () -> B
+ ++ adaptive?() determines whether plotting be done adaptively
+ setAdaptive: B -> B
+ ++ setAdaptive(true) turns adaptive plotting on
+ ++ \spad{setAdaptive(false)} turns adaptive plotting off
+ numFunEvals: () -> I
+ ++ numFunEvals() returns the number of points computed
+ debug: B -> B
+ ++ debug(true) turns debug mode on
+ ++ \spad{debug(false)} turns debug mode off
+
+ Implementation ==> add
+ import PointPackage(DoubleFloat)
+
+--% local functions
+
+ checkRange : R -> R
+ -- checks that left-hand endpoint is less than right-hand endpoint
+ intersect : (R,R) -> R
+ -- intersection of two intervals
+ union : (R,R) -> R
+ -- union of two intervals
+ join : (L C,I) -> R
+ parametricRange: % -> R
+ select : (L P,P -> F,(F,F) -> F) -> F
+ rangeRefine : (C,R) -> C
+ adaptivePlot : (C,R,R,R,I) -> C
+ basicPlot : (F -> P,R) -> C
+ basicRefine : (C,R) -> C
+ pt : (F,F) -> P
+ Fnan? : F -> Boolean
+ Pnan? : P -> Boolean
+
+--% representation
+
+ Rep := Record( parametric: B, _
+ display: L R, _
+ bounds: L R, _
+ axisLabels: L S, _
+ functions: L C )
+
+--% global constants
+
+ ADAPTIVE: B := true
+ MINPOINTS: I := 49
+ MAXPOINTS: I := 1000
+ NUMFUNEVALS: I := 0
+ SCREENRES: I := 500
+ ANGLEBOUND: F := cos inv (4::F)
+ DEBUG: B := false
+
+ Fnan?(x) == x ~= x
+ Pnan?(x) == any?(Fnan?,x)
+
+--% graphics output
+
+ listBranches plot ==
+ outList : L L P := nil()
+ for curve in plot.functions repeat
+ -- curve is C
+ newl:L P:=nil()
+ for p in curve.points repeat
+ if not Pnan? p then newl:=cons(p,newl)
+ else if not empty? newl then
+ outList := concat(newl:=reverse! newl,outList)
+ newl:=nil()
+ if not empty? newl then outList := concat(newl:=reverse! newl,outList)
+-- print(outList::OutputForm)
+ outList
+
+ checkRange r == (lo r > hi r => error "ranges cannot be negative"; r)
+ intersect(s,t) == checkRange (max(lo s,lo t) .. min(hi s,hi t))
+ union(s,t) == min(lo s,lo t) .. max(hi s,hi t)
+ join(l,i) ==
+ rr := first l
+ u : R :=
+ i = 0 => first(rr.ranges)
+ i = 1 => second(rr.ranges)
+ third(rr.ranges)
+ for r in rest l repeat
+ i = 0 => u := union(u,first(r.ranges))
+ i = 1 => u := union(u,second(r.ranges))
+ u := union(u,third(r.ranges))
+ u
+ parametricRange r == first(r.bounds)
+
+ minPoints() == MINPOINTS
+ setMinPoints n ==
+ if n < 3 then error "three points minimum required"
+ if MAXPOINTS < n then MAXPOINTS := n
+ MINPOINTS := n
+ maxPoints() == MAXPOINTS
+ setMaxPoints n ==
+ if n < 3 then error "three points minimum required"
+ if MINPOINTS > n then MINPOINTS := n
+ MAXPOINTS := n
+ screenResolution() == SCREENRES
+ setScreenResolution n ==
+ if n < 2 then error "buy a new terminal"
+ SCREENRES := n
+ adaptive?() == ADAPTIVE
+ setAdaptive b == ADAPTIVE := b
+ parametric? p == p.parametric
+
+ numFunEvals() == NUMFUNEVALS
+ debug b == DEBUG := b
+
+ xRange plot == second plot.bounds
+ yRange plot == third plot.bounds
+ tRange plot == first plot.bounds
+
+ select(l,f,g) ==
+ m := f first l
+ if Fnan? m then m := 0
+ for p in rest l repeat
+ n := m
+ m := g(m, f p)
+ if Fnan? m then m := n
+ m
+
+ rangeRefine(curve,nRange) ==
+ checkRange nRange; l := lo nRange; h := hi nRange
+ t := curve.knots; p := curve.points; f := curve.source
+ while not null t and first t < l repeat
+ (t := rest t; p := rest p)
+ c: L F := nil(); q: L P := nil()
+ while not null t and (first t) <= h repeat
+ c := concat(first t,c); q := concat(first p,q)
+ t := rest t; p := rest p
+ if null c then return basicPlot(f,nRange)
+ if first c < h then
+ c := concat(h,c)
+ q := concat(f h,q)
+ NUMFUNEVALS := NUMFUNEVALS + 1
+ t := c := reverse_! c; p := q := reverse_! q
+ s := (h-l)/(minPoints()::F-1)
+ if (first t) ^= l then
+ t := c := concat(l,c)
+ p := q := concat(f l,p)
+ NUMFUNEVALS := NUMFUNEVALS + 1
+ while not null rest t repeat
+ n := wholePart((second(t) - first(t))/s)
+ d := (second(t) - first(t))/((n+1)::F)
+ for i in 1..n repeat
+ t.rest := concat(first(t) + d,rest t)
+ p.rest := concat(f second t,rest p)
+ NUMFUNEVALS := NUMFUNEVALS + 1
+ t := rest t; p := rest p
+ t := rest t
+ p := rest p
+ xRange := select(q,xCoord,min) .. select(q,xCoord,max)
+ yRange := select(q,yCoord,min) .. select(q,yCoord,max)
+ [ f, [nRange,xRange,yRange], c, q]
+
+ adaptivePlot(curve,tRange,xRange,yRange,pixelfraction) ==
+ xDiff := hi xRange - lo xRange
+ yDiff := hi yRange - lo yRange
+ xDiff = 0 or yDiff = 0 => curve
+ l := lo tRange; h := hi tRange
+ (tDiff := h-l) = 0 => curve
+-- if (EQL(yDiff, _$NaNvalue$Lisp)$Lisp) then yDiff := 1::F
+ t := curve.knots
+ #t < 3 => curve
+ p := curve.points; f := curve.source
+ minLength:F := 4::F/500::F
+ maxLength:F := 1::F/6::F
+ tLimit := tDiff/(pixelfraction*500)::F
+ while not null t and first t < l repeat (t := rest t; p := rest p)
+ #t < 3 => curve
+ headert := t; headerp := p
+
+ -- jitter the input points
+-- while not null rest rest t repeat
+-- t0 := second(t); t1 := third(t)
+-- jitter := (random()$I) :: F
+-- jitter := sin (jitter)
+-- val := t0 + jitter * (t1-t0)/10::F
+-- t.2 := val; p.2 := f val
+-- t := rest t; p := rest p
+-- t := headert; p := headerp
+
+ st := t; sp := p
+ todot : L L F := nil()
+ todop : L L P := nil()
+ while not null rest rest st repeat
+ todot := concat_!(todot, st)
+ todop := concat_!(todop, sp)
+ st := rest st; sp := rest sp
+ st := headert; sp := headerp
+ todo1 := todot; todo2 := todop
+ n : I := 0
+ while not null todo1 repeat
+ st := first(todo1)
+ t0 := first(st); t1 := second(st); t2 := third(st)
+ if t2 > h then leave
+ t2 - t0 < tLimit =>
+ todo1 := rest todo1
+ todo2 := rest todo2
+ if not null todo1 then (t := first(todo1); p := first(todo2))
+ sp := first(todo2)
+ x0 := xCoord first(sp); y0 := yCoord first(sp)
+ x1 := xCoord second(sp); y1 := yCoord second(sp)
+ x2 := xCoord third(sp); y2 := yCoord third(sp)
+ a1 := (x1-x0)/xDiff; b1 := (y1-y0)/yDiff
+ a2 := (x2-x1)/xDiff; b2 := (y2-y1)/yDiff
+ s1 := sqrt(a1**2+b1**2); s2 := sqrt(a2**2+b2**2)
+ dp := a1*a2+b1*b2
+
+ s1 < maxLength and s2 < maxLength and _
+ (s1 = 0::F or s2 = 0::F or
+ s1 < minLength and s2 < minLength or _
+ dp/s1/s2 > ANGLEBOUND) =>
+ todo1 := rest todo1
+ todo2 := rest todo2
+ if not null todo1 then (t := first(todo1); p := first(todo2))
+ if n > MAXPOINTS then leave else n := n + 1
+ st := rest t
+ if not null rest rest st then
+ tm := (t0+t1)/2::F
+ tj := tm
+ t.rest := concat(tj,rest t)
+ p.rest := concat(f tj, rest p)
+ todo1 := concat_!(todo1, t)
+ todo2 := concat_!(todo2, p)
+ t := rest t; p := rest p
+ todo1 := concat_!(todo1, t)
+ todo2 := concat_!(todo2, p)
+ t := rest t; p := rest p
+ todo1 := rest todo1; todo2 := rest todo2
+
+ tm := (t1+t2)/2::F
+ tj := tm
+ t.rest := concat(tj, rest t)
+ p.rest := concat(f tj, rest p)
+ todo1 := concat_!(todo1, t)
+ todo2 := concat_!(todo2, p)
+ t := rest t; p := rest p
+ todo1 := concat_!(todo1, t)
+ todo2 := concat_!(todo2, p)
+ todo1 := rest todo1
+ todo2 := rest todo2
+ if not null todo1 then (t := first(todo1); p := first(todo2))
+ else
+ tm := (t0+t1)/2::F
+ tj := tm
+ t.rest := concat(tj,rest t)
+ p.rest := concat(f tj, rest p)
+ todo1 := concat_!(todo1, t)
+ todo2 := concat_!(todo2, p)
+ t := rest t; p := rest p
+ todo1 := concat_!(todo1, t)
+ todo2 := concat_!(todo2, p)
+ t := rest t; p := rest p
+
+ tm := (t1+t2)/2::F
+ tj := tm
+ t.rest := concat(tj, rest t)
+ p.rest := concat(f tj, rest p)
+ todo1 := concat_!(todo1, t)
+ todo2 := concat_!(todo2, p)
+ todo1 := rest todo1
+ todo2 := rest todo2
+ if not null todo1 then (t := first(todo1); p := first(todo2))
+ n > 0 =>
+ NUMFUNEVALS := NUMFUNEVALS + n
+ t := curve.knots; p := curve.points
+ xRange := select(p,xCoord,min) .. select(p,xCoord,max)
+ yRange := select(p,yCoord,min) .. select(p,yCoord,max)
+ [ curve.source, [tRange,xRange,yRange], t, p ]
+ curve
+
+ basicPlot(f,tRange) ==
+ checkRange tRange
+ l := lo tRange
+ h := hi tRange
+ t : L F := list l
+ p : L P := list f l
+ s := (h-l)/(minPoints()-1)::F
+ for i in 2..minPoints()-1 repeat
+ l := l+s
+ t := concat(l,t)
+ p := concat(f l,p)
+ t := reverse_! concat(h,t)
+ p := reverse_! concat(f h,p)
+-- print(p::OutputForm)
+ xRange : R := select(p,xCoord,min) .. select(p,xCoord,max)
+ yRange : R := select(p,yCoord,min) .. select(p,yCoord,max)
+ [ f, [tRange,xRange,yRange], t, p ]
+
+ zoom(p,xRange) ==
+ [p.parametric, [xRange,third(p.display)], p.bounds, _
+ p.axisLabels, p.functions]
+ zoom(p,xRange,yRange) ==
+ [p.parametric, [xRange,yRange], p.bounds, _
+ p.axisLabels, p.functions]
+
+ basicRefine(curve,nRange) ==
+ tRange:R := first curve.ranges
+ -- curve := copy$C curve -- Yet another compiler bug
+ curve: C := [curve.source,curve.ranges,curve.knots,curve.points]
+ t := curve.knots := copy curve.knots
+ p := curve.points := copy curve.points
+ l := lo nRange; h := hi nRange
+ f := curve.source
+ while not null rest t and first t < h repeat
+ second(t) < l => (t := rest t; p := rest p)
+ -- insert new point between t.0 and t.1
+ tm : F := (first(t) + second(t))/2::F
+-- if DEBUG then output$O (tm::E)
+ pm := f tm
+ NUMFUNEVALS := NUMFUNEVALS + 1
+ t.rest := concat(tm,rest t); t := rest rest t
+ p.rest := concat(pm,rest p); p := rest rest p
+ t := curve.knots; p := curve.points
+ xRange := select(p,xCoord,min) .. select(p,xCoord,max)
+ yRange := select(p,yCoord,min) .. select(p,yCoord,max)
+ [ curve.source, [tRange,xRange,yRange], t, p ]
+
+ refine p == refine(p,parametricRange p)
+ refine(p,nRange) ==
+ NUMFUNEVALS := 0
+ tRange := parametricRange p
+ nRange := intersect(tRange,nRange)
+ curves: L C := [basicRefine(c,nRange) for c in p.functions]
+ xRange := join(curves,1); yRange := join(curves,2)
+ if adaptive? then
+ tlimit := if parametric? p then 8 else 1
+ curves := [adaptivePlot(c,nRange,xRange,yRange, _
+ tlimit) for c in curves]
+ xRange := join(curves,1); yRange := join(curves,2)
+-- print(NUMFUNEVALS::OUT)
+ [p.parametric, p.display, [tRange,xRange,yRange], _
+ p.axisLabels, curves ]
+
+ plot(p:%,tRange:R) ==
+ -- re plot p on a new range making use of the points already
+ -- computed if possible
+ NUMFUNEVALS := 0
+ curves: L C := [rangeRefine(c,tRange) for c in p.functions]
+ xRange := join(curves,1); yRange := join(curves,2)
+ if adaptive? then
+ tlimit := if parametric? p then 8 else 1
+ curves := [adaptivePlot(c,tRange,xRange,yRange,tlimit) for c in curves]
+ xRange := join(curves,1); yRange := join(curves,2)
+-- print(NUMFUNEVALS::OUT)
+ [ p.parametric, [xRange,yRange], [tRange,xRange,yRange],
+ p.axisLabels, curves ]
+
+ pt(xx,yy) == point(l : L F := [xx,yy])
+
+ myTrap: (F-> F, F) -> F
+ myTrap(ff:F-> F, f:F):F ==
+ s := trapNumericErrors(ff(f))$Lisp :: Union(F, "failed")
+ s case "failed" => _$NaNvalue$Lisp
+ r:F:=s::F
+ r > max()$F or r < min()$F => _$NaNvalue$Lisp
+ r
+
+ plot(f:F -> F,xRange:R) ==
+ p := basicPlot(pt(#1,myTrap(f,#1)),xRange)
+ r := p.ranges
+ NUMFUNEVALS := minPoints()
+ if adaptive? then
+ p := adaptivePlot(p,first r,second r,third r,1)
+ r := p.ranges
+ [ false, rest r, r, nil(), [ p ] ]
+
+ plot(f:F -> F,xRange:R,yRange:R) ==
+ p := plot(f,xRange)
+ p.display := [xRange,checkRange yRange]
+ p
+
+ plot(f:F -> F,g:F -> F,tRange:R) ==
+ p := basicPlot(pt(myTrap(f,#1),myTrap(g,#1)),tRange)
+ r := p.ranges
+ NUMFUNEVALS := minPoints()
+ if adaptive? then
+ p := adaptivePlot(p,first r,second r,third r,8)
+ r := p.ranges
+ [ true, rest r, r, nil(), [ p ] ]
+
+ plot(f:F -> F,g:F -> F,tRange:R,xRange:R,yRange:R) ==
+ p := plot(f,g,tRange)
+ p.display := [checkRange xRange,checkRange yRange]
+ p
+
+ pointPlot(f:F -> P,tRange:R) ==
+ p := basicPlot(f,tRange)
+ r := p.ranges
+ NUMFUNEVALS := minPoints()
+ if adaptive? then
+ p := adaptivePlot(p,first r,second r,third r,8)
+ r := p.ranges
+ [ true, rest r, r, nil(), [ p ] ]
+
+ pointPlot(f:F -> P,tRange:R,xRange:R,yRange:R) ==
+ p := pointPlot(f,tRange)
+ p.display := [checkRange xRange,checkRange yRange]
+ p
+
+ plot(l:L(F -> F),xRange:R) ==
+ if null l then error "empty list of functions"
+ t: L C := [ basicPlot(pt(#1,myTrap(f,#1)),xRange) for f in l ]
+ yRange := join(t,2)
+ NUMFUNEVALS := # l * minPoints()
+ if adaptive? then
+ t := [adaptivePlot(p,xRange,xRange,yRange,1) _
+ for f in l for p in t]
+ yRange := join(t,2)
+-- print(NUMFUNEVALS::OUT)
+ [false, [xRange,yRange], [xRange,xRange,yRange], nil(), t ]
+
+ plot(l:L(F -> F),xRange:R,yRange:R) ==
+ p := plot(l,xRange)
+ p.display := [xRange,checkRange yRange]
+ p
+
+ plotPolar(f,thetaRange) ==
+ plot(f(#1) * cos(#1),f(#1) * sin(#1),thetaRange)
+
+ plotPolar f == plotPolar(f,segment(0,2*pi()))
+
+--% terminal output
+
+ coerce r ==
+ spaces: OUT := coerce " "
+ xSymbol := "x = " :: OUT
+ ySymbol := "y = " :: OUT
+ tSymbol := "t = " :: OUT
+ plotSymbol := "PLOT" :: OUT
+ tRange := (parametricRange r) :: OUT
+ f : L OUT := nil()
+ for curve in r.functions repeat
+ xRange := second(curve.ranges) :: OUT
+ yRange := third(curve.ranges) :: OUT
+ l : L OUT := [xSymbol,xRange,spaces,ySymbol,yRange]
+ if parametric? r then
+ l := concat_!([tSymbol,tRange,spaces],l)
+ h : OUT := hconcat l
+ l := [p::OUT for p in curve.points]
+ f := concat(vconcat concat(h,l),f)
+ prefix("PLOT" :: OUT, reverse_! f)
+
+@
+\section{package PLOT1 PlotFunctions1}
+<<package PLOT1 PlotFunctions1>>=
+)abbrev package PLOT1 PlotFunctions1
+++ Authors: R.T.M. Bronstein, C.J. Williamson
+++ Date Created: Jan 1989
+++ Date Last Updated: 4 Mar 1990
+++ Basic Operations: plot, plotPolar
+++ Related Constructors:
+++ Also See:
+++ AMS Classifications:
+++ Keywords:
+++ References:
+++ Description: PlotFunctions1 provides facilities for plotting curves
+++ where functions SF -> SF are specified by giving an expression
+PlotFunctions1(S:ConvertibleTo InputForm): with
+ plot : (S, Symbol, Segment DoubleFloat) -> Plot
+ ++ plot(fcn,x,seg) plots the graph of \spad{y = f(x)} on a interval
+ plot : (S, S, Symbol, Segment DoubleFloat) -> Plot
+ ++ plot(f,g,t,seg) plots the graph of \spad{x = f(t)}, \spad{y = g(t)} as t
+ ++ ranges over an interval.
+ plotPolar : (S, Symbol, Segment DoubleFloat) -> Plot
+ ++ plotPolar(f,theta,seg) plots the graph of \spad{r = f(theta)} as
+ ++ theta ranges over an interval
+ plotPolar : (S, Symbol) -> Plot
+ ++ plotPolar(f,theta) plots the graph of \spad{r = f(theta)} as
+ ++ theta ranges from 0 to 2 pi
+ == add
+ import MakeFloatCompiledFunction(S)
+
+ plot(f, x, xRange) == plot(makeFloatFunction(f, x), xRange)
+ plotPolar(f,theta) == plotPolar(makeFloatFunction(f,theta))
+ plot(f1, f2, t, tRange) ==
+ plot(makeFloatFunction(f1, t), makeFloatFunction(f2, t), tRange)
+ plotPolar(f,theta,thetaRange) ==
+ plotPolar(makeFloatFunction(f,theta),thetaRange)
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+<<domain PLOT Plot>>
+<<package PLOT1 PlotFunctions1>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}