diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/padiclib.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/padiclib.spad.pamphlet')
-rw-r--r-- | src/algebra/padiclib.spad.pamphlet | 571 |
1 files changed, 571 insertions, 0 deletions
diff --git a/src/algebra/padiclib.spad.pamphlet b/src/algebra/padiclib.spad.pamphlet new file mode 100644 index 00000000..9b3e79cc --- /dev/null +++ b/src/algebra/padiclib.spad.pamphlet @@ -0,0 +1,571 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra padiclib.spad} +\author{Clifton J. Williamson} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{package IBPTOOLS IntegralBasisPolynomialTools} +<<package IBPTOOLS IntegralBasisPolynomialTools>>= +)abbrev package IBPTOOLS IntegralBasisPolynomialTools +++ Author: Clifton Williamson +++ Date Created: 13 August 1993 +++ Date Last Updated: 17 August 1993 +++ Basic Operations: mapUnivariate, mapBivariate +++ Related Domains: PAdicWildFunctionFieldIntegralBasis(K,R,UP,F) +++ Also See: WildFunctionFieldIntegralBasis, FunctionFieldIntegralBasis +++ AMS Classifications: +++ Keywords: function field, finite field, integral basis +++ Examples: +++ References: +++ Description: IntegralBasisPolynomialTools provides functions for +++ mapping functions on the coefficients of univariate and bivariate +++ polynomials. + +IntegralBasisPolynomialTools(K,R,UP,L): Exports == Implementation where + K : Ring + R : UnivariatePolynomialCategory K + UP : UnivariatePolynomialCategory R + L : Ring + + MAT ==> Matrix + SUP ==> SparseUnivariatePolynomial + + Exports ==> with + mapUnivariate: (L -> K,SUP L) -> R + ++ mapUnivariate(f,p(x)) applies the function \spad{f} to the + ++ coefficients of \spad{p(x)}. + + mapUnivariate: (K -> L,R) -> SUP L + ++ mapUnivariate(f,p(x)) applies the function \spad{f} to the + ++ coefficients of \spad{p(x)}. + + mapUnivariateIfCan: (L -> Union(K,"failed"),SUP L) -> Union(R,"failed") + ++ mapUnivariateIfCan(f,p(x)) applies the function \spad{f} to the + ++ coefficients of \spad{p(x)}, if possible, and returns + ++ \spad{"failed"} otherwise. + + mapMatrixIfCan: (L -> Union(K,"failed"),MAT SUP L) -> Union(MAT R,"failed") + ++ mapMatrixIfCan(f,mat) applies the function \spad{f} to the + ++ coefficients of the entries of \spad{mat} if possible, and returns + ++ \spad{"failed"} otherwise. + + mapBivariate: (K -> L,UP) -> SUP SUP L + ++ mapBivariate(f,p(x,y)) applies the function \spad{f} to the + ++ coefficients of \spad{p(x,y)}. + + Implementation ==> add + + mapUnivariate(f:L -> K,poly:SUP L) == + ans : R := 0 + while not zero? poly repeat + ans := ans + monomial(f leadingCoefficient poly,degree poly) + poly := reductum poly + ans + + mapUnivariate(f:K -> L,poly:R) == + ans : SUP L := 0 + while not zero? poly repeat + ans := ans + monomial(f leadingCoefficient poly,degree poly) + poly := reductum poly + ans + + mapUnivariateIfCan(f,poly) == + ans : R := 0 + while not zero? poly repeat + (lc := f leadingCoefficient poly) case "failed" => return "failed" + ans := ans + monomial(lc :: K,degree poly) + poly := reductum poly + ans + + mapMatrixIfCan(f,mat) == + m := nrows mat; n := ncols mat + matOut : MAT R := new(m,n,0) + for i in 1..m repeat for j in 1..n repeat + (poly := mapUnivariateIfCan(f,qelt(mat,i,j))) case "failed" => + return "failed" + qsetelt_!(matOut,i,j,poly :: R) + matOut + + mapBivariate(f,poly) == + ans : SUP SUP L := 0 + while not zero? poly repeat + ans := + ans + monomial(mapUnivariate(f,leadingCoefficient poly),degree poly) + poly := reductum poly + ans + +@ +\section{package IBACHIN ChineseRemainderToolsForIntegralBases} +<<package IBACHIN ChineseRemainderToolsForIntegralBases>>= +)abbrev package IBACHIN ChineseRemainderToolsForIntegralBases +++ Author: Clifton Williamson +++ Date Created: 9 August 1993 +++ Date Last Updated: 3 December 1993 +++ Basic Operations: chineseRemainder, factorList +++ Related Domains: PAdicWildFunctionFieldIntegralBasis(K,R,UP,F) +++ Also See: WildFunctionFieldIntegralBasis, FunctionFieldIntegralBasis +++ AMS Classifications: +++ Keywords: function field, finite field, integral basis +++ Examples: +++ References: +++ Description: + +ChineseRemainderToolsForIntegralBases(K,R,UP): Exports == Implementation where + K : FiniteFieldCategory + R : UnivariatePolynomialCategory K + UP : UnivariatePolynomialCategory R + + DDFACT ==> DistinctDegreeFactorize + I ==> Integer + L ==> List + L2 ==> ListFunctions2 + Mat ==> Matrix R + NNI ==> NonNegativeInteger + PI ==> PositiveInteger + Q ==> Fraction R + SAE ==> SimpleAlgebraicExtension + SUP ==> SparseUnivariatePolynomial + SUP2 ==> SparseUnivariatePolynomialFunctions2 + Result ==> Record(basis: Mat, basisDen: R, basisInv: Mat) + + Exports ==> with + factorList: (K,NNI,NNI,NNI) -> L SUP K + ++ factorList(k,n,m,j) \undocumented + + listConjugateBases: (Result,NNI,NNI) -> List Result + ++ listConjugateBases(bas,q,n) returns the list + ++ \spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]}, where + ++ \spad{Frob} raises the coefficients of all polynomials + ++ appearing in the basis \spad{bas} to the \spad{q}th power. + + chineseRemainder: (List UP, List Result, NNI) -> Result + ++ chineseRemainder(lu,lr,n) \undocumented + + Implementation ==> add + import ModularHermitianRowReduction(R) + import TriangularMatrixOperations(R, Vector R, Vector R, Matrix R) + + applyFrobToMatrix: (Matrix R,NNI) -> Matrix R + applyFrobToMatrix(mat,q) == + -- raises the coefficients of the polynomial entries of 'mat' + -- to the qth power + m := nrows mat; n := ncols mat + ans : Matrix R := new(m,n,0) + for i in 1..m repeat for j in 1..n repeat + qsetelt_!(ans,i,j,map(#1 ** q,qelt(mat,i,j))) + ans + + listConjugateBases(bas,q,n) == + outList : List Result := list bas + b := bas.basis; bInv := bas.basisInv; bDen := bas.basisDen + for i in 1..(n-1) repeat + b := applyFrobToMatrix(b,q) + bInv := applyFrobToMatrix(bInv,q) + bDen := map(#1 ** q,bDen) + newBasis : Result := [b,bDen,bInv] + outList := concat(newBasis,outList) + reverse_! outList + + factorList(a,q,n,k) == + coef : SUP K := monomial(a,0); xx : SUP K := monomial(1,1) + outList : L SUP K := list((xx - coef)**k) + for i in 1..(n-1) repeat + coef := coef ** q + outList := concat((xx - coef)**k,outList) + reverse_! outList + + basisInfoToPolys: (Mat,R,R) -> L UP + basisInfoToPolys(mat,lcm,den) == + n := nrows(mat) :: I; n1 := n - 1 + outList : L UP := empty() + for i in 1..n repeat + pp : UP := 0 + for j in 0..n1 repeat + pp := pp + monomial((lcm quo den) * qelt(mat,i,j+1),j) + outList := concat(pp,outList) + reverse_! outList + + basesToPolyLists: (L Result,R) -> L L UP + basesToPolyLists(basisList,lcm) == + [basisInfoToPolys(b.basis,lcm,b.basisDen) for b in basisList] + + OUT ==> OutputForm + + approximateExtendedEuclidean: (UP,UP,R,NNI) -> Record(coef1:UP,coef2:UP) + approximateExtendedEuclidean(f,g,p,n) == + -- f and g are monic and relatively prime (mod p) + -- function returns [coef1,coef2] such that + -- coef1 * f + coef2 * g = 1 (mod p^n) + sae := SAE(K,R,p) + fSUP : SUP R := makeSUP f; gSUP : SUP R := makeSUP g + fBar : SUP sae := map(convert(#1)@sae,fSUP)$SUP2(R,sae) + gBar : SUP sae := map(convert(#1)@sae,gSUP)$SUP2(R,sae) + ee := extendedEuclidean(fBar,gBar) +-- not one?(ee.generator) => + not (ee.generator = 1) => + error "polynomials aren't relatively prime" + ss1 := ee.coef1; tt1 := ee.coef2 + s1 : SUP R := map(convert(#1)@R,ss1)$SUP2(sae,R); s := s1 + t1 : SUP R := map(convert(#1)@R,tt1)$SUP2(sae,R); t := t1 + pPower := p + for i in 2..n repeat + num := 1 - s * fSUP - t * gSUP + rhs := (num exquo pPower) :: SUP R + sigma := map(#1 rem p,s1 * rhs); tau := map(#1 rem p,t1 * rhs) + s := s + pPower * sigma; t := t + pPower * tau + quorem := monicDivide(s,gSUP) + pPower := pPower * p + s := map(#1 rem pPower,quorem.remainder) + t := map(#1 rem pPower,t + fSUP * (quorem.quotient)) + [unmakeSUP s,unmakeSUP t] + + --mapChineseToList: (L SUP Q,L SUP Q,I) -> L SUP Q + --mapChineseToList(list,polyList,i) == + mapChineseToList: (L UP,L UP,I,R) -> L UP + mapChineseToList(list,polyList,i,den) == + -- 'polyList' consists of MONIC polynomials + -- computes a polynomial p such that p = pp (modulo polyList[i]) + -- and p = 0 (modulo polyList[j]) for j ~= i for each 'pp' in 'list' + -- create polynomials + q : UP := 1 + for j in 1..(i-1) repeat + q := q * first polyList + polyList := rest polyList + p := first polyList + polyList := rest polyList + for j in (i+1).. while not empty? polyList repeat + q := q * first polyList + polyList := rest polyList + --p := map((numer(#1) rem den)/1, p) + --q := map((numer(#1) rem den)/1, q) + -- 'den' is a power of an irreducible polynomial + --!! make this computation more efficient!! + factoredDen := factor(den)$DDFACT(K,R) + prime := nthFactor(factoredDen,1) + n := nthExponent(factoredDen,1) :: NNI + invPoly := approximateExtendedEuclidean(q,p,prime,n).coef1 + -- monicDivide may be inefficient? + [monicDivide(pp * invPoly * q,p * q).remainder for pp in list] + + polyListToMatrix: (L UP,NNI) -> Mat + polyListToMatrix(polyList,n) == + mat : Mat := new(n,n,0) + for i in 1..n for poly in polyList repeat + while not zero? poly repeat + mat(i,degree(poly) + 1) := leadingCoefficient poly + poly := reductum poly + mat + + chineseRemainder(factors,factorBases,n) == + denLCM : R := reduce("lcm",[base.basisDen for base in factorBases]) + denLCM = 1 => [scalarMatrix(n,1),1,scalarMatrix(n,1)] + -- compute local basis polynomials with denominators cleared + factorBasisPolyLists := basesToPolyLists(factorBases,denLCM) + -- use Chinese remainder to compute basis polynomials w/o denominators + basisPolyLists : L L UP := empty() + for i in 1.. for pList in factorBasisPolyLists repeat + polyList := mapChineseToList(pList,factors,i,denLCM) + basisPolyLists := concat(polyList,basisPolyLists) + basisPolys := concat reverse_! basisPolyLists + mat := squareTop rowEchelon(polyListToMatrix(basisPolys,n),denLCM) + matInv := UpTriBddDenomInv(mat,denLCM) + [mat,denLCM,matInv] + +@ +\section{package PWFFINTB PAdicWildFunctionFieldIntegralBasis} +<<package PWFFINTB PAdicWildFunctionFieldIntegralBasis>>= +)abbrev package PWFFINTB PAdicWildFunctionFieldIntegralBasis +++ Author: Clifton Williamson +++ Date Created: 5 July 1993 +++ Date Last Updated: 17 August 1993 +++ Basic Operations: integralBasis, localIntegralBasis +++ Related Domains: WildFunctionFieldIntegralBasis(K,R,UP,F) +++ Also See: FunctionFieldIntegralBasis +++ AMS Classifications: +++ Keywords: function field, finite field, integral basis +++ Examples: +++ References: +++ Description: +++ In this package K is a finite field, R is a ring of univariate +++ polynomials over K, and F is a monogenic algebra over R. +++ We require that F is monogenic, i.e. that \spad{F = K[x,y]/(f(x,y))}, +++ because the integral basis algorithm used will factor the polynomial +++ \spad{f(x,y)}. The package provides a function to compute the integral +++ closure of R in the quotient field of F as well as a function to compute +++ a "local integral basis" at a specific prime. + +PAdicWildFunctionFieldIntegralBasis(K,R,UP,F): Exports == Implementation where + K : FiniteFieldCategory + R : UnivariatePolynomialCategory K + UP : UnivariatePolynomialCategory R + F : MonogenicAlgebra(R,UP) + + I ==> Integer + L ==> List + L2 ==> ListFunctions2 + Mat ==> Matrix R + NNI ==> NonNegativeInteger + PI ==> PositiveInteger + Q ==> Fraction R + SAE ==> SimpleAlgebraicExtension + SUP ==> SparseUnivariatePolynomial + CDEN ==> CommonDenominator + DDFACT ==> DistinctDegreeFactorize + WFFINTBS ==> WildFunctionFieldIntegralBasis + Result ==> Record(basis: Mat, basisDen: R, basisInv:Mat) + IResult ==> Record(basis: Mat, basisDen: R, basisInv:Mat,discr: R) + IBPTOOLS ==> IntegralBasisPolynomialTools + IBACHIN ==> ChineseRemainderToolsForIntegralBases + IRREDFFX ==> IrredPolyOverFiniteField + GHEN ==> GeneralHenselPackage + + Exports ==> with + integralBasis : () -> Result + ++ \spad{integralBasis()} returns a record + ++ \spad{[basis,basisDen,basisInv] } containing information regarding + ++ the integral closure of R in the quotient field of the framed + ++ algebra F. F is a framed algebra with R-module basis + ++ \spad{w1,w2,...,wn}. + ++ If 'basis' is the matrix \spad{(aij, i = 1..n, j = 1..n)}, then + ++ the \spad{i}th element of the integral basis is + ++ \spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)}, i.e. the + ++ \spad{i}th row of 'basis' contains the coordinates of the + ++ \spad{i}th basis vector. Similarly, the \spad{i}th row of the + ++ matrix 'basisInv' contains the coordinates of \spad{wi} with respect + ++ to the basis \spad{v1,...,vn}: if 'basisInv' is the matrix + ++ \spad{(bij, i = 1..n, j = 1..n)}, then + ++ \spad{wi = sum(bij * vj, j = 1..n)}. + localIntegralBasis : R -> Result + ++ \spad{integralBasis(p)} returns a record + ++ \spad{[basis,basisDen,basisInv] } containing information regarding + ++ the local integral closure of R at the prime \spad{p} in the quotient + ++ field of the framed algebra F. F is a framed algebra with R-module + ++ basis \spad{w1,w2,...,wn}. + ++ If 'basis' is the matrix \spad{(aij, i = 1..n, j = 1..n)}, then + ++ the \spad{i}th element of the local integral basis is + ++ \spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)}, i.e. the + ++ \spad{i}th row of 'basis' contains the coordinates of the + ++ \spad{i}th basis vector. Similarly, the \spad{i}th row of the + ++ matrix 'basisInv' contains the coordinates of \spad{wi} with respect + ++ to the basis \spad{v1,...,vn}: if 'basisInv' is the matrix + ++ \spad{(bij, i = 1..n, j = 1..n)}, then + ++ \spad{wi = sum(bij * vj, j = 1..n)}. + reducedDiscriminant: UP -> R + ++ reducedDiscriminant(up) \undocumented + + Implementation ==> add + import IntegralBasisTools(R, UP, F) + import GeneralHenselPackage(R,UP) + import ModularHermitianRowReduction(R) + import TriangularMatrixOperations(R, Vector R, Vector R, Matrix R) + + reducedDiscriminant f == + ff : SUP Q := mapUnivariate(#1 :: Q,f)$IBPTOOLS(R,UP,SUP UP,Q) + ee := extendedEuclidean(ff,differentiate ff) + cc := concat(coefficients(ee.coef1),coefficients(ee.coef2)) + cden := splitDenominator(cc)$CDEN(R,Q,L Q) + denom := cden.den + gg := gcd map(numer,cden.num)$L2(Q,R) + (ans := denom exquo gg) case "failed" => + error "PWFFINTB: error in reduced discriminant computation" + ans :: R + + compLocalBasis: (UP,R) -> Result + compLocalBasis(poly,prime) == + -- compute a local integral basis at 'prime' for k[x,y]/(poly(x,y)). + sae := SAE(R,UP,poly) + localIntegralBasis(prime)$WFFINTBS(K,R,UP,sae) + + compLocalBasisOverExt: (UP,R,UP,NNI) -> Result + compLocalBasisOverExt(poly0,prime0,irrPoly0,k) == + -- poly0 = irrPoly0**k (mod prime0) + n := degree poly0; disc0 := discriminant poly0 + (disc0 exquo prime0) case "failed" => + [scalarMatrix(n,1), 1, scalarMatrix(n,1)] + r := degree irrPoly0 + -- extend scalars: + -- construct irreducible polynomial of degree r over K + irrPoly := generateIrredPoly(r :: PI)$IRREDFFX(K) + -- construct extension of degree r over K + E := SAE(K,SUP K,irrPoly) + -- lift coefficients to elements of E + poly := mapBivariate(#1 :: E,poly0)$IBPTOOLS(K,R,UP,E) + redDisc0 := reducedDiscriminant poly0 + redDisc := mapUnivariate(#1 :: E,redDisc0)$IBPTOOLS(K,R,UP,E) + prime := mapUnivariate(#1 :: E,prime0)$IBPTOOLS(K,R,UP,E) + sae := SAE(E,SUP E,prime) + -- reduction (mod prime) of polynomial of which poly is the kth power + redIrrPoly := + pp := mapBivariate(#1 :: E,irrPoly0)$IBPTOOLS(K,R,UP,E) + mapUnivariate(reduce,pp)$IBPTOOLS(SUP E,SUP SUP E,SUP SUP SUP E,sae) + -- factor the reduction + factorListSAE := factors factor(redIrrPoly)$DDFACT(sae,SUP sae) + -- list the 'primary factors' of the reduction of poly + redFactors : List SUP sae := [(f.factor)**k for f in factorListSAE] + -- lift these factors to elements of SUP SUP E + primaries : List SUP SUP E := + [mapUnivariate(lift,ff)$IBPTOOLS(SUP E,SUP SUP E,SUP SUP SUP E,sae) _ + for ff in redFactors] + -- lift the factors to factors modulo a suitable power of 'prime' + deg := (1 + order(redDisc,prime) * degree(prime)) :: PI + henselInfo := HenselLift(poly,primaries,prime,deg)$GHEN(SUP E,SUP SUP E) + henselFactors := henselInfo.plist + psi1 := first henselFactors + FF := SAE(SUP E,SUP SUP E,psi1) + factorIb := localIntegralBasis(prime)$WFFINTBS(E,SUP E,SUP SUP E,FF) + bs := listConjugateBases(factorIb,size()$K,r)$IBACHIN(E,SUP E,SUP SUP E) + ib := chineseRemainder(henselFactors,bs,n)$IBACHIN(E,SUP E,SUP SUP E) + b : Matrix R := + bas := mapMatrixIfCan(retractIfCan,ib.basis)$IBPTOOLS(K,R,UP,E) + bas case "failed" => error "retraction of basis failed" + bas :: Matrix R + bInv : Matrix R := + --bas := mapMatrixIfCan(ric,ib.basisInv)$IBPTOOLS(K,R,UP,E) + bas := mapMatrixIfCan(retractIfCan,ib.basisInv)$IBPTOOLS(K,R,UP,E) + bas case "failed" => error "retraction of basis inverse failed" + bas :: Matrix R + bDen : R := + p := mapUnivariateIfCan(retractIfCan,ib.basisDen)$IBPTOOLS(K,R,UP,E) + p case "failed" => error "retraction of basis denominator failed" + p :: R + [b,bDen,bInv] + + padicLocalIntegralBasis: (UP,R,R,R) -> IResult + padicLocalIntegralBasis(p,disc,redDisc,prime) == + -- polynomials in x modulo 'prime' + sae := SAE(K,R,prime) + -- find the factorization of 'p' modulo 'prime' and lift the + -- prime powers to elements of UP: + -- reduce 'p' modulo 'prime' + reducedP := mapUnivariate(reduce,p)$IBPTOOLS(R,UP,SUP UP,sae) + -- factor the reduced polynomial + factorListSAE := factors factor(reducedP)$DDFACT(sae,SUP sae) + -- if only one prime factor, perform usual integral basis computation + (# factorListSAE) = 1 => + ib := localIntegralBasis(prime)$WFFINTBS(K,R,UP,F) + index := diagonalProduct(ib.basisInv) + [ib.basis,ib.basisDen,ib.basisInv,disc quo (index * index)] + -- list the 'prime factors' of the reduced polynomial + redPrimes : List SUP sae := + [f.factor for f in factorListSAE] + -- lift these factors to elements of UP + primes : List UP := + [mapUnivariate(lift,ff)$IBPTOOLS(R,UP,SUP UP,sae) for ff in redPrimes] + -- list the exponents + expons : List NNI := [((f.exponent) :: NNI) for f in factorListSAE] + -- list the 'primary factors' of the reduced polynomial + redPrimaries : List SUP sae := + [(f.factor) **((f.exponent) :: NNI) for f in factorListSAE] + -- lift these factors to elements of UP + primaries : List UP := + [mapUnivariate(lift,ff)$IBPTOOLS(R,UP,SUP UP,sae) for ff in redPrimaries] + -- lift the factors to factors modulo a suitable power of 'prime' + deg := (1 + order(redDisc,prime) * degree(prime)) :: PI + henselInfo := HenselLift(p,primaries,prime,deg) + henselFactors := henselInfo.plist + -- compute integral bases for the factors + factorBases : List Result := empty(); degPrime := degree prime + for pp in primes for k in expons for qq in henselFactors repeat + base := + degPp := degree pp + degPp > 1 and gcd(degPp,degPrime) = 1 => + compLocalBasisOverExt(qq,prime,pp,k) + compLocalBasis(qq,prime) + factorBases := concat(base,factorBases) + factorBases := reverse_! factorBases + ib := chineseRemainder(henselFactors,factorBases,rank()$F)$IBACHIN(K,R,UP) + index := diagonalProduct(ib.basisInv) + [ib.basis,ib.basisDen,ib.basisInv,disc quo (index * index)] + + localIntegralBasis prime == + p := definingPolynomial()$F; disc := discriminant p + --disc := determinant traceMatrix()$F + redDisc := reducedDiscriminant p + ib := padicLocalIntegralBasis(p,disc,redDisc,prime) + [ib.basis,ib.basisDen,ib.basisInv] + + listSquaredFactors: R -> List R + listSquaredFactors px == + -- returns a list of the factors of px which occur with + -- exponent > 1 + ans : List R := empty() + factored := factor(px)$DistinctDegreeFactorize(K,R) + for f in factors(factored) repeat + if f.exponent > 1 then ans := concat(f.factor,ans) + ans + + integralBasis() == + p := definingPolynomial()$F; disc := discriminant p; n := rank()$F + --traceMat := traceMatrix()$F; n := rank()$F + --disc := determinant traceMat -- discriminant of current order + singList := listSquaredFactors disc -- singularities of relative Spec + redDisc := reducedDiscriminant p + runningRb := runningRbinv := scalarMatrix(n,1)$Mat + -- runningRb = basis matrix of current order + -- runningRbinv = inverse basis matrix of current order + -- these are wrt the original basis for F + runningRbden : R := 1 + -- runningRbden = denominator for current basis matrix + empty? singList => [runningRb, runningRbden, runningRbinv] + for prime in singList repeat + lb := padicLocalIntegralBasis(p,disc,redDisc,prime) + rb := lb.basis; rbinv := lb.basisInv; rbden := lb.basisDen + disc := lb.discr + mat := vertConcat(rbden * runningRb,runningRbden * rb) + runningRbden := runningRbden * rbden + runningRb := squareTop rowEchelon(mat,runningRbden) + --runningRb := squareTop rowEch mat + runningRbinv := UpTriBddDenomInv(runningRb,runningRbden) + [runningRb, runningRbden, runningRbinv] + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<package IBPTOOLS IntegralBasisPolynomialTools>> +<<package IBACHIN ChineseRemainderToolsForIntegralBases>> +<<package PWFFINTB PAdicWildFunctionFieldIntegralBasis>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |