diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/multfact.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/multfact.spad.pamphlet')
-rw-r--r-- | src/algebra/multfact.spad.pamphlet | 604 |
1 files changed, 604 insertions, 0 deletions
diff --git a/src/algebra/multfact.spad.pamphlet b/src/algebra/multfact.spad.pamphlet new file mode 100644 index 00000000..6efcd462 --- /dev/null +++ b/src/algebra/multfact.spad.pamphlet @@ -0,0 +1,604 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra multfact.spad} +\author{Patrizia Gianni} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{package INNMFACT InnerMultFact} +<<package INNMFACT InnerMultFact>>= +)abbrev package INNMFACT InnerMultFact +++ Author: P. Gianni +++ Date Created: 1983 +++ Date Last Updated: Sept. 1990 +++ Additional Comments: JHD Aug 1997 +++ Basic Functions: +++ Related Constructors: MultivariateFactorize, AlgebraicMultFact +++ Also See: +++ AMS Classifications: +++ Keywords: +++ References: +++ Description: +++ This is an inner package for factoring multivariate polynomials +++ over various coefficient domains in characteristic 0. +++ The univariate factor operation is passed as a parameter. +++ Multivariate hensel lifting is used to lift the univariate +++ factorization + +-- Both exposed functions call mFactor. This deals with issues such as +-- monomial factors, contents, square-freeness etc., then calls intfact. +-- This uses intChoose to find a "good" evaluation and factorise the +-- corresponding univariate, and then uses MultivariateLifting to find +-- the multivariate factors. + +InnerMultFact(OV,E,R,P) : C == T + where + R : Join(EuclideanDomain, CharacteristicZero) + -- with factor on R[x] + OV : OrderedSet + E : OrderedAbelianMonoidSup + P : PolynomialCategory(R,E,OV) + BP ==> SparseUnivariatePolynomial R + UFactor ==> (BP -> Factored BP) + Z ==> Integer + MParFact ==> Record(irr:P,pow:Z) + USP ==> SparseUnivariatePolynomial P + SUParFact ==> Record(irr:USP,pow:Z) + SUPFinalFact ==> Record(contp:R,factors:List SUParFact) + MFinalFact ==> Record(contp:R,factors:List MParFact) + + -- contp = content, + -- factors = List of irreducible factors with exponent + L ==> List + + C == with + factor : (P,UFactor) -> Factored P + ++ factor(p,ufact) factors the multivariate polynomial p + ++ by specializing variables and calling the univariate + ++ factorizer ufact. + factor : (USP,UFactor) -> Factored USP + ++ factor(p,ufact) factors the multivariate polynomial p + ++ by specializing variables and calling the univariate + ++ factorizer ufact. p is represented as a univariate + ++ polynomial with multivariate coefficients. + + T == add + + NNI ==> NonNegativeInteger + + LeadFact ==> Record(polfac:L P,correct:R,corrfact:L BP) + ContPrim ==> Record(cont:P,prim:P) + ParFact ==> Record(irr:BP,pow:Z) + FinalFact ==> Record(contp:R,factors:L ParFact) + NewOrd ==> Record(npol:USP,nvar:L OV,newdeg:L NNI) + pmod:R := (prevPrime(2**26)$IntegerPrimesPackage(Integer))::R + + import GenExEuclid(R,BP) + import MultivariateLifting(E,OV,R,P) + import FactoringUtilities(E,OV,R,P) + import LeadingCoefDetermination(OV,E,R,P) + Valuf ==> Record(inval:L L R,unvfact:L BP,lu:R,complead:L R) + UPCF2 ==> UnivariatePolynomialCategoryFunctions2 + + ---- Local Functions ---- + mFactor : (P,UFactor) -> MFinalFact + supFactor : (USP,UFactor) -> SUPFinalFact + mfconst : (USP,L OV,L NNI,UFactor) -> L USP + mfpol : (USP,L OV,L NNI,UFactor) -> L USP + monicMfpol: (USP,L OV,L NNI,UFactor) -> L USP + varChoose : (P,L OV,L NNI) -> NewOrd + simplify : (P,L OV,L NNI,UFactor) -> MFinalFact + intChoose : (USP,L OV,R,L P,L L R,UFactor) -> Union(Valuf,"failed") + intfact : (USP,L OV,L NNI,MFinalFact,L L R,UFactor) -> L USP + pretest : (P,NNI,L OV,L R) -> FinalFact + checkzero : (USP,BP) -> Boolean + localNorm : L BP -> Z + + convertPUP(lfg:MFinalFact): SUPFinalFact == + [lfg.contp,[[lff.irr ::USP,lff.pow]$SUParFact + for lff in lfg.factors]]$SUPFinalFact + + -- intermediate routine if an SUP was passed in. + supFactor(um:USP,ufactor:UFactor) : SUPFinalFact == + ground?(um) => convertPUP(mFactor(ground um,ufactor)) + lvar:L OV:= "setUnion"/[variables cf for cf in coefficients um] + empty? lvar => -- the polynomial is univariate + umv:= map(ground,um)$UPCF2(P,USP,R,BP) + lfact:=ufactor umv + [retract unit lfact,[[map(coerce,ff.factor)$UPCF2(R,BP,P,USP), + ff.exponent] for ff in factors lfact]]$SUPFinalFact + lcont:P + lf:L USP + flead : SUPFinalFact:=[0,empty()]$SUPFinalFact + factorlist:L SUParFact :=empty() + + mdeg :=minimumDegree um ---- is the Mindeg > 0? ---- + if mdeg>0 then + f1:USP:=monomial(1,mdeg) + um:=(um exquo f1)::USP + factorlist:=cons([monomial(1,1),mdeg],factorlist) + if degree um=0 then return + lfg:=convertPUP mFactor(ground um, ufactor) + [lfg.contp,append(factorlist,lfg.factors)] + uum:=unitNormal um + um :=uum.canonical + sqfacs := squareFree(um)$MultivariateSquareFree(E,OV,R,P) + lcont := ground(uum.unit * unit sqfacs) + ---- Factorize the content ---- + flead:=convertPUP mFactor(lcont,ufactor) + factorlist:=append(flead.factors,factorlist) + ---- Make the polynomial square-free ---- + sqqfact:=factors sqfacs + --- Factorize the primitive square-free terms --- + for fact in sqqfact repeat + ffactor:USP:=fact.factor + ffexp:=fact.exponent + zero? degree ffactor => + lfg:=mFactor(ground ffactor,ufactor) + lcont:=lfg.contp * lcont + factorlist := append(factorlist, + [[lff.irr ::USP,lff.pow * ffexp]$SUParFact + for lff in lfg.factors]) + coefs := coefficients ffactor + ldeg:= ["max"/[degree(fc,xx) for fc in coefs] for xx in lvar] + lf := + ground?(leadingCoefficient ffactor) => + mfconst(ffactor,lvar,ldeg,ufactor) + mfpol(ffactor,lvar,ldeg,ufactor) + auxfl:=[[lfp,ffexp]$SUParFact for lfp in lf] + factorlist:=append(factorlist,auxfl) + lcfacs := */[leadingCoefficient leadingCoefficient(f.irr)**((f.pow)::NNI) + for f in factorlist] + [(leadingCoefficient leadingCoefficient(um) exquo lcfacs)::R, + factorlist]$SUPFinalFact + + factor(um:USP,ufactor:UFactor):Factored USP == + flist := supFactor(um,ufactor) + (flist.contp):: P :: USP * + (*/[primeFactor(u.irr,u.pow) for u in flist.factors]) + + checkzero(u:USP,um:BP) : Boolean == + u=0 => um =0 + um = 0 => false + degree u = degree um => checkzero(reductum u, reductum um) + false + --- Choose the variable of less degree --- + varChoose(m:P,lvar:L OV,ldeg:L NNI) : NewOrd == + k:="min"/[d for d in ldeg] + k=degree(m,first lvar) => + [univariate(m,first lvar),lvar,ldeg]$NewOrd + i:=position(k,ldeg) + x:OV:=lvar.i + ldeg:=cons(k,delete(ldeg,i)) + lvar:=cons(x,delete(lvar,i)) + [univariate(m,x),lvar,ldeg]$NewOrd + + localNorm(lum: L BP): Z == + R is AlgebraicNumber => + "max"/[numberOfMonomials ff for ff in lum] + + "max"/[+/[euclideanSize cc for i in 0..degree ff| + (cc:= coefficient(ff,i))^=0] for ff in lum] + + --- Choose the integer to reduce to univariate case --- + intChoose(um:USP,lvar:L OV,clc:R,plist:L P,ltry:L L R, + ufactor:UFactor) : Union(Valuf,"failed") == + -- declarations + degum:NNI := degree um + nvar1:=#lvar + range:NNI:=5 + unifact:L BP + ctf1 : R := 1 + testp:Boolean := -- polynomial leading coefficient + empty? plist => false + true + leadcomp,leadcomp1 : L R + leadcomp:=leadcomp1:=empty() + nfatt:NNI := degum+1 + lffc:R:=1 + lffc1:=lffc + newunifact : L BP:=empty() + leadtest:=true --- the lc test with polCase has to be performed + int:L R:=empty() + + -- New sets of integers are chosen to reduce the multivariate problem to + -- a univariate one, until we find twice the + -- same (and minimal) number of "univariate" factors: + -- the set smaller in modulo is chosen. + -- Note that there is no guarantee that this is the truth: + -- merely the closest approximation we have found! + + while true repeat + testp and #ltry>10 => return "failed" + lval := [ ran(range) for i in 1..nvar1] + member?(lval,ltry) => range:=2*range + ltry := cons(lval,ltry) + leadcomp1:=[retract eval(pol,lvar,lval) for pol in plist] + testp and or/[unit? epl for epl in leadcomp1] => range:=2*range + newm:BP:=completeEval(um,lvar,lval) + degum ^= degree newm or minimumDegree newm ^=0 => range:=2*range + lffc1:=content newm + newm:=(newm exquo lffc1)::BP + testp and leadtest and ^ polCase(lffc1*clc,#plist,leadcomp1) + => range:=2*range + degree(gcd [newm,differentiate(newm)])^=0 => range:=2*range + luniv:=ufactor(newm) + lunivf:= factors luniv + lffc1:R:=retract(unit luniv)@R * lffc1 + nf:= #lunivf + + nf=0 or nf>nfatt => "next values" --- pretest failed --- + + --- the univariate polynomial is irreducible --- + if nf=1 then leave (unifact:=[newm]) + + -- the new integer give the same number of factors + nfatt = nf => + -- if this is the first univariate factorization with polCase=true + -- or if the last factorization has smaller norm and satisfies + -- polCase + if leadtest or + ((localNorm unifact > localNorm [ff.factor for ff in lunivf]) + and (^testp or polCase(lffc1*clc,#plist,leadcomp1))) then + unifact:=[uf.factor for uf in lunivf] + int:=lval + lffc:=lffc1 + if testp then leadcomp:=leadcomp1 + leave "foundit" + + -- the first univariate factorization, inizialize + nfatt > degum => + unifact:=[uf.factor for uf in lunivf] + lffc:=lffc1 + if testp then leadcomp:=leadcomp1 + int:=lval + leadtest := false + nfatt := nf + + nfatt>nf => -- for the previous values there were more factors + if testp then leadtest:=^polCase(lffc*clc,#plist,leadcomp) + else leadtest:= false + -- if polCase=true we can consider the univariate decomposition + if ^leadtest then + unifact:=[uf.factor for uf in lunivf] + lffc:=lffc1 + if testp then leadcomp:=leadcomp1 + int:=lval + nfatt := nf + [cons(int,ltry),unifact,lffc,leadcomp]$Valuf + + + ---- The polynomial has mindeg>0 ---- + + simplify(m:P,lvar:L OV,lmdeg:L NNI,ufactor:UFactor):MFinalFact == + factorlist:L MParFact:=[] + pol1:P:= 1$P + for x in lvar repeat + i := lmdeg.(position(x,lvar)) + i=0 => "next value" + pol1:=pol1*monomial(1$P,x,i) + factorlist:=cons([x::P,i]$MParFact,factorlist) + m := (m exquo pol1)::P + ground? m => [retract m,factorlist]$MFinalFact + flead:=mFactor(m,ufactor) + flead.factors:=append(factorlist,flead.factors) + flead + + -- This is the key internal function + -- We now know that the polynomial is square-free etc., + -- We use intChoose to find a set of integer values to reduce the + -- problem to univariate (and for efficiency, intChoose returns + -- the univariate factors). + -- In the case of a polynomial leading coefficient, we check that this + -- is consistent with leading coefficient determination (else try again) + -- We then lift the univariate factors to multivariate factors, and + -- return the result + intfact(um:USP,lvar: L OV,ldeg:L NNI,tleadpol:MFinalFact, + ltry:L L R,ufactor:UFactor) : L USP == + polcase:Boolean:=(not empty? tleadpol.factors) + vfchoo:Valuf:= + polcase => + leadpol:L P:=[ff.irr for ff in tleadpol.factors] + check:=intChoose(um,lvar,tleadpol.contp,leadpol,ltry,ufactor) + check case "failed" => return monicMfpol(um,lvar,ldeg,ufactor) + check::Valuf + intChoose(um,lvar,1,empty(),empty(),ufactor)::Valuf + unifact:List BP := vfchoo.unvfact + nfact:NNI := #unifact + nfact=1 => [um] + ltry:L L R:= vfchoo.inval + lval:L R:=first ltry + dd:= vfchoo.lu + leadval:L R:=empty() + lpol:List P:=empty() + if polcase then + leadval := vfchoo.complead + distf := distFact(vfchoo.lu,unifact,tleadpol,leadval,lvar,lval) + distf case "failed" => + return intfact(um,lvar,ldeg,tleadpol,ltry,ufactor) + dist := distf :: LeadFact + -- check the factorization of leading coefficient + lpol:= dist.polfac + dd := dist.correct + unifact:=dist.corrfact + if dd^=1 then +-- if polcase then lpol := [unitCanonical lp for lp in lpol] +-- dd:=unitCanonical(dd) + unifact := [dd * unif for unif in unifact] + umd := unitNormal(dd).unit * ((dd**(nfact-1)::NNI)::P)*um + else umd := um + (ffin:=lifting(umd,lvar,unifact,lval,lpol,ldeg,pmod)) + case "failed" => intfact(um,lvar,ldeg,tleadpol,ltry,ufactor) + factfin: L USP:=ffin :: L USP + if dd^=1 then + factfin:=[primitivePart ff for ff in factfin] + factfin + + ---- m square-free,primitive,lc constant ---- + mfconst(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP == + factfin:L USP:=empty() + empty? lvar => + lum:=factors ufactor(map(ground,um)$UPCF2(P,USP,R,BP)) + [map(coerce,uf.factor)$UPCF2(R,BP,P,USP) for uf in lum] + intfact(um,lvar,ldeg,[0,empty()]$MFinalFact,empty(),ufactor) + + monicize(um:USP,c:P):USP == + n:=degree(um) + ans:USP := monomial(1,n) + n:=(n-1)::NonNegativeInteger + prod:P:=1 + while (um:=reductum(um)) ^= 0 repeat + i := degree um + lc := leadingCoefficient um + prod := prod * c ** (n-(n:=i))::NonNegativeInteger + ans := ans + monomial(prod*lc, i) + ans + + unmonicize(m:USP,c:P):USP == primitivePart m(monomial(c,1)) + + --- m is square-free,primitive,lc is a polynomial --- + monicMfpol(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP == + l := leadingCoefficient um + monpol := monicize(um,l) + nldeg := degree(monpol,lvar) + map(unmonicize(#1,l), + mfconst(monpol,lvar,nldeg,ufactor)) + + mfpol(um:USP,lvar:L OV,ldeg:L NNI,ufactor:UFactor):L USP == + R has Field => + monicMfpol(um,lvar,ldeg,ufactor) + tleadpol:=mFactor(leadingCoefficient um,ufactor) + intfact(um,lvar,ldeg,tleadpol,[],ufactor) + + mFactor(m:P,ufactor:UFactor) : MFinalFact == + ground?(m) => [retract(m),empty()]$MFinalFact + lvar:L OV:= variables m + lcont:P + lf:L USP + flead : MFinalFact:=[0,empty()]$MFinalFact + factorlist:L MParFact :=empty() + + lmdeg :=minimumDegree(m,lvar) ---- is the Mindeg > 0? ---- + or/[n>0 for n in lmdeg] => simplify(m,lvar,lmdeg,ufactor) + + sqfacs := squareFree m + lcont := unit sqfacs + + ---- Factorize the content ---- + if ground? lcont then flead.contp:=retract lcont + else flead:=mFactor(lcont,ufactor) + factorlist:=flead.factors + + + + ---- Make the polynomial square-free ---- + sqqfact:=factors sqfacs + + --- Factorize the primitive square-free terms --- + for fact in sqqfact repeat + ffactor:P:=fact.factor + ffexp := fact.exponent + lvar := variables ffactor + x:OV :=lvar.first + ldeg:=degree(ffactor,lvar) + --- Is the polynomial linear in one of the variables ? --- + member?(1,ldeg) => + x:OV:=lvar.position(1,ldeg) + lcont:= gcd coefficients(univariate(ffactor,x)) + ffactor:=(ffactor exquo lcont)::P + factorlist:=cons([ffactor,ffexp]$MParFact,factorlist) + for lcterm in mFactor(lcont,ufactor).factors repeat + factorlist:=cons([lcterm.irr,lcterm.pow * ffexp], factorlist) + + varch:=varChoose(ffactor,lvar,ldeg) + um:=varch.npol + + x:=lvar.first + ldeg:=ldeg.rest + lvar := lvar.rest + if varch.nvar.first ^= x then + lvar:= varch.nvar + x := lvar.first + lvar := lvar.rest + pc:= gcd coefficients um + if pc^=1 then + um:=(um exquo pc)::USP + ffactor:=multivariate(um,x) + for lcterm in mFactor(pc,ufactor).factors repeat + factorlist:=cons([lcterm.irr,lcterm.pow*ffexp],factorlist) + ldeg:=degree(ffactor,lvar) + um := unitCanonical um + if ground?(leadingCoefficient um) then + lf:= mfconst(um,lvar,ldeg,ufactor) + else lf:=mfpol(um,lvar,ldeg,ufactor) + auxfl:=[[unitCanonical multivariate(lfp,x),ffexp]$MParFact for lfp in lf] + factorlist:=append(factorlist,auxfl) + lcfacs := */[leadingCoefficient(f.irr)**((f.pow)::NNI) for f in factorlist] + [(leadingCoefficient(m) exquo lcfacs):: R,factorlist]$MFinalFact + + factor(m:P,ufactor:UFactor):Factored P == + flist := mFactor(m,ufactor) + (flist.contp):: P * + (*/[primeFactor(u.irr,u.pow) for u in flist.factors]) + +@ +\section{package MULTFACT MultivariateFactorize} +<<package MULTFACT MultivariateFactorize>>= +)abbrev package MULTFACT MultivariateFactorize +++ Author: P. Gianni +++ Date Created: 1983 +++ Date Last Updated: Sept. 1990 +++ Basic Functions: +++ Related Constructors: MultFiniteFactorize, AlgebraicMultFact, UnivariateFactorize +++ Also See: +++ AMS Classifications: +++ Keywords: +++ References: +++ Description: +++ This is the top level package for doing multivariate factorization +++ over basic domains like \spadtype{Integer} or \spadtype{Fraction Integer}. + +MultivariateFactorize(OV,E,R,P) : C == T + where + R : Join(EuclideanDomain, CharacteristicZero) + -- with factor on R[x] + OV : OrderedSet + E : OrderedAbelianMonoidSup + P : PolynomialCategory(R,E,OV) + Z ==> Integer + MParFact ==> Record(irr:P,pow:Z) + USP ==> SparseUnivariatePolynomial P + SUParFact ==> Record(irr:USP,pow:Z) + SUPFinalFact ==> Record(contp:R,factors:List SUParFact) + MFinalFact ==> Record(contp:R,factors:List MParFact) + + -- contp = content, + -- factors = List of irreducible factors with exponent + L ==> List + + C == with + factor : P -> Factored P + ++ factor(p) factors the multivariate polynomial p over its coefficient + ++ domain + factor : USP -> Factored USP + ++ factor(p) factors the multivariate polynomial p over its coefficient + ++ domain where p is represented as a univariate polynomial with + ++ multivariate coefficients + T == add + factor(p:P) : Factored P == + R is Fraction Integer => + factor(p)$MRationalFactorize(E,OV,Integer,P) + R is Fraction Complex Integer => + factor(p)$MRationalFactorize(E,OV,Complex Integer,P) + R is Fraction Polynomial Integer and OV has convert: % -> Symbol => + factor(p)$MPolyCatRationalFunctionFactorizer(E,OV,Integer,P) + factor(p,factor$GenUFactorize(R))$InnerMultFact(OV,E,R,P) + + factor(up:USP) : Factored USP == + factor(up,factor$GenUFactorize(R))$InnerMultFact(OV,E,R,P) + +@ +\section{package ALGMFACT AlgebraicMultFact} +<<package ALGMFACT AlgebraicMultFact>>= +)abbrev package ALGMFACT AlgebraicMultFact +++ Author: P. Gianni +++ Date Created: 1990 +++ Date Last Updated: +++ Basic Functions: +++ Related Constructors: +++ Also See: +++ AMS Classifications: +++ Keywords: +++ References: +++ Description: +++ This package factors multivariate polynomials over the +++ domain of \spadtype{AlgebraicNumber} by allowing the user +++ to specify a list of algebraic numbers generating the particular +++ extension to factor over. + +AlgebraicMultFact(OV,E,P) : C == T + where + AN ==> AlgebraicNumber + OV : OrderedSet + E : OrderedAbelianMonoidSup + P : PolynomialCategory(AN,E,OV) + BP ==> SparseUnivariatePolynomial AN + Z ==> Integer + MParFact ==> Record(irr:P,pow:Z) + USP ==> SparseUnivariatePolynomial P + SUParFact ==> Record(irr:USP,pow:Z) + SUPFinalFact ==> Record(contp:R,factors:List SUParFact) + MFinalFact ==> Record(contp:R,factors:List MParFact) + + -- contp = content, + -- factors = List of irreducible factors with exponent + L ==> List + + C == with + factor : (P,L AN) -> Factored P + ++ factor(p,lan) factors the polynomial p over the extension + ++ generated by the algebraic numbers given by the list lan. + factor : (USP,L AN) -> Factored USP + ++ factor(p,lan) factors the polynomial p over the extension + ++ generated by the algebraic numbers given by the list lan. + ++ p is presented as a univariate polynomial with multivariate + ++ coefficients. + T == add + AF := AlgFactor(BP) + + factor(p:P,lalg:L AN) : Factored P == + factor(p,factor(#1,lalg)$AF)$InnerMultFact(OV,E,AN,P) + + factor(up:USP,lalg:L AN) : Factored USP == + factor(up,factor(#1,lalg)$AF)$InnerMultFact(OV,E,AN,P) + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<package INNMFACT InnerMultFact>> +<<package MULTFACT MultivariateFactorize>> +<<package ALGMFACT AlgebraicMultFact>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |