diff options
author | dos-reis <gdr@axiomatics.org> | 2008-04-03 04:23:42 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2008-04-03 04:23:42 +0000 |
commit | 001e19b08ba7fb1b9e6f6bdb44a82ba3db3fc532 (patch) | |
tree | da9e2fe5d81ff4cd7709d12e44b8c3e348b8a8e3 /src/algebra/lodof.spad.pamphlet | |
parent | a7bab9a6c2070d05e2dbd256ce455079c8ced385 (diff) | |
download | open-axiom-001e19b08ba7fb1b9e6f6bdb44a82ba3db3fc532.tar.gz |
Replace `^=' with `~='.
Diffstat (limited to 'src/algebra/lodof.spad.pamphlet')
-rw-r--r-- | src/algebra/lodof.spad.pamphlet | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/src/algebra/lodof.spad.pamphlet b/src/algebra/lodof.spad.pamphlet index fd72c15a..3a35261a 100644 --- a/src/algebra/lodof.spad.pamphlet +++ b/src/algebra/lodof.spad.pamphlet @@ -149,7 +149,7 @@ SetOfMIntegersInOneToN(m, n): Exports == Implementation where while found < k repeat if b.i then found := found + 1 if found < k then i := i + 1 - b.p and i ^= p => "failed" + b.p and i ~= p => "failed" newb := copy b newb.p := true newb.i := false @@ -309,7 +309,7 @@ AssociatedEquations(R, L):Exports == Implementation where u := incrementKthElement(wi, k::PI)$S if u case S then eq(lookup(u::S)) := 1 if member?(n, wi) then - for j in 1..n | a.j ^= 0 repeat + for j in 1..n | a.j ~= 0 repeat u := replaceKthElement(wi, m, j::PI) if u case S then eq(lookup(u::S)) := (odd? delta(wi, m, j::PI) => -a.j; a.j) @@ -334,8 +334,8 @@ AssociatedEquations(R, L):Exports == Implementation where computeIt: (L, PI, N) -> REC makeeq(v, m, i, n) == - [v.i, makeop row(m, i) - 1, [v.j for j in 1..n | j ^= i], - [makeop row(m, j) for j in 1..n | j ^= i]] + [v.i, makeop row(m, i) - 1, [v.j for j in 1..n | j ~= i], + [makeop row(m, j) for j in 1..n | j ~= i]] associatedEquations(op, m) == (u := firstUncouplingMatrix(op, m)) case "failed" => computeIt(op,m,1) @@ -414,7 +414,7 @@ LinearOrdinaryDifferentialOperatorFactorizer(F, UP): Exports == Impl where first sol expsols(l, zeros, ezfactor, all?) == - sol := [differentiate(f)/f for f in ratDsolve(l, 0).basis | f ^= 0] + sol := [differentiate(f)/f for f in ratDsolve(l, 0).basis | f ~= 0] not(all? or empty? sol) => sol concat(sol, ricDsolve(l, zeros, ezfactor)) |