aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/intfact.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2008-10-18 00:55:11 +0000
committerdos-reis <gdr@axiomatics.org>2008-10-18 00:55:11 +0000
commit6e4fb4c2b8cc5f867eceb3bc39572fe218bb5d13 (patch)
tree619a415b58c3681cf06ef7d70ed356c9e6acd4eb /src/algebra/intfact.spad.pamphlet
parentd68d655abaef0d14652e07608c633b1ff1feefda (diff)
downloadopen-axiom-6e4fb4c2b8cc5f867eceb3bc39572fe218bb5d13.tar.gz
Fix AW/293
* algebra/gaussian.spad.pamphlet (ComplexCategory): Remove complex attribute.
Diffstat (limited to 'src/algebra/intfact.spad.pamphlet')
-rw-r--r--src/algebra/intfact.spad.pamphlet32
1 files changed, 28 insertions, 4 deletions
diff --git a/src/algebra/intfact.spad.pamphlet b/src/algebra/intfact.spad.pamphlet
index 4d4cc811..8e21b097 100644
--- a/src/algebra/intfact.spad.pamphlet
+++ b/src/algebra/intfact.spad.pamphlet
@@ -407,28 +407,52 @@ IntegerFactorizationPackage(I): Exports == Implementation where
G:I := 1
ys: I
x: I
+ l: I
+ k: I
until G > 1 repeat
x := y
- k: I
+ ys := y
for i in 1..convert(r)@Integer repeat
y := (y*y+5::I) rem n
q := (q*abs(x-y)) rem n
- k := 0
+ k := 0::I
+ G := gcd(q,n)
until (k>=r) or (G>1) repeat
ys := y
for i in 1..convert(min(m,r-k))@Integer repeat
y := (y*y+5::I) rem n
- q := q*abs(x-y) rem n
+ q := (q*abs(x-y)) rem n
G := gcd(q,n)
k := k+m
+ k := k + r
r := 2*r
if G=n then
+ l := k - m
+ G := 1::I
until G>1 repeat
ys := (ys*ys+5::I) rem n
G := gcd(abs(x-ys),n)
+ l := l + 1
+ if G = n then
+ y := x0
+ x := x0
+ for i in 1..convert(l)@Integer repeat
+ y := (y*y + 5::I) rem n
+ G := gcd(abs(x-y),n)
+ until G > 1 repeat
+ y := (y*y + 5::I) rem n
+ x := (x*x + 5::I) rem n
+ G := gcd(abs(x-y),n)
G=n => "failed"
G
+ PollardSmallFactor20(n: I): Union(I,"failed") ==
+ r: Union(I,"failed")
+ for i in 1..20 repeat
+ r := PollardSmallFactor n
+ r case I => return r
+ r
+
BasicSieve(r, lim) ==
l:List(I) :=
[1::I,2::I,2::I,4::I,2::I,4::I,2::I,4::I,6::I,2::I,6::I]
@@ -480,7 +504,7 @@ IntegerFactorizationPackage(I): Exports == Implementation where
(y:=perfectSqrt (x**2-n)) case I =>
insert_!(x+y,a,c)
insert_!(x-y,a,c)
- (d := PollardSmallFactor n) case I =>
+ (d := PollardSmallFactor20 n) case I =>
m' : NonNegativeInteger
for m' in 0.. while zero?(n rem d) repeat n := n quo d
insert_!(d, a, m' * c)