aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/intfact.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-06-21 03:14:17 +0000
committerdos-reis <gdr@axiomatics.org>2010-06-21 03:14:17 +0000
commit640d839b4de4d0daf0dde00ba08eab6d264160ad (patch)
tree3b5565cbc731bd2455a13c72a9a9c539f3088310 /src/algebra/intfact.spad.pamphlet
parentbf21f6c3c98ea62bbd952ecd2382b63f4cd370bb (diff)
downloadopen-axiom-640d839b4de4d0daf0dde00ba08eab6d264160ad.tar.gz
* algebra/sgcf.spad.pamphlet (SymmetricGroupCombinatoricFunctions)
[listYoungTableaus]: Fix thinko. Don't use lattice in its own initialization before it is defined.
Diffstat (limited to 'src/algebra/intfact.spad.pamphlet')
-rw-r--r--src/algebra/intfact.spad.pamphlet18
1 files changed, 12 insertions, 6 deletions
diff --git a/src/algebra/intfact.spad.pamphlet b/src/algebra/intfact.spad.pamphlet
index 8615cf7f..dc7629d1 100644
--- a/src/algebra/intfact.spad.pamphlet
+++ b/src/algebra/intfact.spad.pamphlet
@@ -151,8 +151,10 @@ IntegerPrimesPackage(I:IntegerNumberSystem): with
nm1 := n-1
q := (nm1) quo two
- k : NonNegativeInteger
- for k in 1.. while not odd? q repeat q := q quo two
+ k: NonNegativeInteger := 1
+ while not odd? q repeat
+ q := q quo two
+ k := k + 1
-- q = (n-1) quo 2**k for largest possible k
n < JaeschkeLimit =>
@@ -457,8 +459,10 @@ IntegerFactorizationPackage(I): Exports == Implementation where
if n<d*d then
if n>1 then ls := concat!(ls, ["prime",n,1]$FFE)
return makeFR(1, ls)
- m : Integer
- for m in 0.. while zero?(n rem d) repeat n := n quo d
+ m: Integer := 0
+ while zero?(n rem d) repeat
+ n := n quo d
+ m := m + 1
if m>0 then ls := concat!(ls, ["prime",d,convert m]$FFE)
d := d+s
@@ -496,8 +500,10 @@ IntegerFactorizationPackage(I): Exports == Implementation where
insert!(x+y,a,c)
insert!(x-y,a,c)
(d := PollardSmallFactor20 n) case I =>
- m' : NonNegativeInteger
- for m' in 0.. while zero?(n rem d) repeat n := n quo d
+ m': NonNegativeInteger := 0
+ while zero?(n rem d) repeat
+ n := n quo d
+ m' := m' + 1
insert!(d, a, m' * c)
if n > 1 then insert!(n, a, c)
-- an elliptic curve factorization attempt should be made here