aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/interval.as.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2011-09-15 18:48:07 +0000
committerdos-reis <gdr@axiomatics.org>2011-09-15 18:48:07 +0000
commit12c856f9901ef3d6d82fb99855ecdf3e0b91484b (patch)
tree96fc5a4bf51d9777f8d46ac1e4023c0d8e545f8a /src/algebra/interval.as.pamphlet
parent9025c74466dcd1c38dde5e4c63934ff0b2e4f18d (diff)
downloadopen-axiom-12c856f9901ef3d6d82fb99855ecdf3e0b91484b.tar.gz
* algebra/axtimer.as.pamphlet: Remove.
* algebra/ffrac.as.pamphlet: Likewise. * algebra/herm.as.pamphlet: Likewise. * algebra/interval.as.pamphlet: Likewise. * algebra/invnode.as.pamphlet: Likewise. * algebra/invrender.as.pamphlet: Likewise. * algebra/invtypes.as.pamphlet: Likewise. * algebra/invutils.as.pamphlet: Likewise. * algebra/iviews.as.pamphlet: Likewise. * algebra/ndftip.as.pamphlet: Likewise. * algebra/nepip.as.pamphlet: Likewise. * algebra/noptip.as.pamphlet: Likewise. * algebra/nqip.as.pamphlet: Likewise. * algebra/nrc.as.pamphlet: Likewise. * algebra/nsfip.as.pamphlet: Likewise.
Diffstat (limited to 'src/algebra/interval.as.pamphlet')
-rw-r--r--src/algebra/interval.as.pamphlet564
1 files changed, 0 insertions, 564 deletions
diff --git a/src/algebra/interval.as.pamphlet b/src/algebra/interval.as.pamphlet
deleted file mode 100644
index 123f1d97..00000000
--- a/src/algebra/interval.as.pamphlet
+++ /dev/null
@@ -1,564 +0,0 @@
-\documentclass{article}
-\usepackage{open-axiom}
-\begin{document}
-\title{\$SPAD/src/algebra interval.as}
-\author{Mike Dewar}
-\maketitle
-\begin{abstract}
-\end{abstract}
-\eject
-\tableofcontents
-\eject
-\section{IntervalCategory}
-<<IntervalCategory>>=
-#include "axiom.as"
-
-+++ Author: Mike Dewar
-+++ Date Created: November 1996
-+++ Date Last Updated:
-+++ Basic Functions:
-+++ Related Constructors:
-+++ Also See:
-+++ AMS Classifications:
-+++ Keywords:
-+++ References:
-+++ Description:
-+++ This category is an implementation of interval arithmetic and transcendental
-+++ functions over intervals.
-
-FUNCAT ==> Join(FloatingPointSystem,TranscendentalFunctionCategory);
-
-define IntervalCategory(R:FUNCAT): Category ==
- Join(GcdDomain, OrderedSet, TranscendentalFunctionCategory, RadicalCategory,
- RetractableTo(Integer))
- with {
- approximate;
- interval : (R,R) -> %;
- ++ interval(inf,sup) creates a new interval, either \axiom{[inf,sup]} if
- ++ \axiom{inf <= sup} or \axiom{[sup,in]} otherwise.
- qinterval : (R,R) -> %;
- ++ qinterval(inf,sup) creates a new interval \axiom{[inf,sup]}, without
- ++ checking the ordering on the elements.
- interval : R -> %;
- ++ interval(f) creates a new interval around f.
- interval : Fraction Integer -> %;
- ++ interval(f) creates a new interval around f.
- inf : % -> R;
- ++ inf(u) returns the infinum of \axiom{u}.
- sup : % -> R;
- ++ sup(u) returns the supremum of \axiom{u}.
- width : % -> R;
- ++ width(u) returns \axiom{sup(u) - inf(u)}.
- positive? : % -> Boolean;
- ++ positive?(u) returns \axiom{true} if every element of u is positive,
- ++ \axiom{false} otherwise.
- negative? : % -> Boolean;
- ++ negative?(u) returns \axiom{true} if every element of u is negative,
- ++ \axiom{false} otherwise.
- contains? : (%,R) -> Boolean;
- ++ contains?(i,f) returns true if \axiom{f} is contained within the interval
- ++ \axiom{i}, false otherwise.
-}
-
-@
-\section{Interval}
-<<Interval>>=
-+++ Author: Mike Dewar
-+++ Date Created: November 1996
-+++ Date Last Updated:
-+++ Basic Functions:
-+++ Related Constructors:
-+++ Also See:
-+++ AMS Classifications:
-+++ Keywords:
-+++ References:
-+++ Description:
-+++ This domain is an implementation of interval arithmetic and transcendental
-+++ functions over intervals.
-
-Interval(R:FUNCAT): IntervalCategory(R) == add {
-
- import from Integer;
- import from R;
-
- Rep ==> Record(Inf:R, Sup:R);
-
- import from Rep;
-
- local roundDown(u:R):R ==
- if zero?(u) then float(-1,-(bits() pretend Integer));
- else float(mantissa(u) - 1,exponent(u));
-
- local roundUp(u:R):R ==
- if zero?(u) then float(1, -(bits()) pretend Integer);
- else float(mantissa(u) + 1,exponent(u));
-
- -- Sometimes the float representation does not use all the bits (e.g. when
- -- representing an integer in software using arbitrary-length Integers as
- -- your mantissa it is convenient to keep them exact). This function
- -- normalises things so that rounding etc. works as expected. It is only
- -- called when creating new intervals.
- local normaliseFloat(u:R):R ==
- if zero? u then u else {
- m : Integer := mantissa u;
- b : Integer := bits() pretend Integer;
- l : Integer := length(m);
- if (l < b) then {
- BASE : Integer := base()$R pretend Integer;
- float(m*BASE**((b-l) pretend PositiveInteger),exponent(u)-b+l);
- }
- else
- u;
- }
-
- interval(i:R,s:R):% == {
- i > s => per [roundDown normaliseFloat s,roundUp normaliseFloat i];
- per [roundDown normaliseFloat i,roundUp normaliseFloat s];
- }
-
- interval(f:R):% == {
- zero?(f) => 0;
- one?(f) => 1;
- -- This next part is necessary to allow e.g. mapping between Expressions:
- -- AXIOM assumes that Integers stay as Integers!
- import from Union(value1:Integer,failed:'failed');
- fnew : R := normaliseFloat f;
- retractIfCan(f)@Union(value1:Integer,failed:'failed') case value1 =>
- per [fnew,fnew];
- per [roundDown fnew, roundUp fnew];
- }
-
- qinterval(i:R,s:R):% ==
- per [roundDown normaliseFloat i,roundUp normaliseFloat s];
-
- local exactInterval(i:R,s:R):% == per [i,s];
- local exactSupInterval(i:R,s:R):% == per [roundDown i,s];
- local exactInfInterval(i:R,s:R):% == per [i,roundUp s];
-
- inf(u:%):R == (rep u).Inf;
- sup(u:%):R == (rep u).Sup;
- width(u:%):R == (rep u).Sup - (rep u).Inf;
-
- contains?(u:%,f:R):Boolean == (f > inf(u)) and (f < sup(u));
-
- positive?(u:%):Boolean == inf(u) > 0;
- negative?(u:%):Boolean == sup(u) < 0;
-
- (<)(a:%,b:%):Boolean ==
- if inf(a) < inf(b) then
- true
- else if inf(a) > inf(b) then
- false
- else
- sup(a) < sup(b);
-
- (+)(a:%,b:%):% == {
- -- A couple of blatent hacks to preserve the Ring Axioms!
- if zero?(a) then return(b) else if zero?(b) then return(a);
- if a=b then return qinterval(2*inf(a),2*sup(a));
- qinterval(inf(a) + inf(b), sup(a) + sup(b));
- }
-
- (-)(a:%,b:%):% == {
- if zero?(a) then return(-b) else if zero?(b) then return(a);
- if a=b then 0 else qinterval(inf(a) - sup(b), sup(a) - inf(b));
- }
-
- (*)(a:%,b:%):% == {
- -- A couple of blatent hacks to preserve the Ring Axioms!
- if one?(a) then return(b) else if one?(b) then return(a);
- if zero?(a) then return(0) else if zero?(b) then return(0);
- prods : List R := sort [inf(a)*inf(b),sup(a)*sup(b),
- inf(a)*sup(b),sup(a)*inf(b)];
- qinterval(first prods, last prods);
- }
-
- (*)(a:Integer,b:%):% == {
- if (a > 0) then
- qinterval(a*inf(b),a*sup(b));
- else if (a < 0) then
- qinterval(a*sup(b),a*inf(b));
- else
- 0;
- }
-
- (*)(a:PositiveInteger,b:%):% == qinterval(a*inf(b),a*sup(b));
-
- (**)(a:%,n:PositiveInteger):% == {
- contains?(a,0) and zero?((n pretend Integer) rem 2) =>
- interval(0,max(inf(a)**n,sup(a)**n));
- interval(inf(a)**n,sup(a)**n);
- }
-
- (^) (a:%,n:PositiveInteger):% == {
- contains?(a,0) and zero?((n pretend Integer) rem 2) =>
- interval(0,max(inf(a)**n,sup(a)**n));
- interval(inf(a)**n,sup(a)**n);
- }
-
- (-)(a:%):% == exactInterval(-sup(a),-inf(a));
-
- (=)(a:%,b:%):Boolean == (inf(a)=inf(b)) and (sup(a)=sup(b));
- (~=)(a:%,b:%):Boolean == (inf(a)~=inf(b)) or (sup(a)~=sup(b));
-
- 1:% == {one : R := normaliseFloat 1; per([one,one])};
- 0:% == per([0,0]);
-
- recip(u:%):Union(value1:%,failed:'failed') == {
- contains?(u,0) => [failed];
- vals:List R := sort[1/inf(u),1/sup(u)];
- [qinterval(first vals, last vals)];
- }
-
- unit?(u:%):Boolean == contains?(u,0);
-
- exquo(u:%,v:%):Union(value1:%,failed:'failed') == {
- contains?(v,0) => [failed];
- one?(v) => [u];
- u=v => [1];
- u=-v => [-1];
- vals:List R := sort[inf(u)/inf(v),inf(u)/sup(v),sup(u)/inf(v),sup(u)/sup(v)];
- [qinterval(first vals, last vals)];
- }
-
- gcd(u:%,v:%):% == 1;
-
- coerce(u:Integer):% == {
- ur := normaliseFloat(u::R);
- exactInterval(ur,ur);
- }
-
- interval(u:Fraction Integer):% == {
- import { log2 : % -> %;
- coerce : Integer -> %;
- retractIfCan : % -> Union(value1:Integer,failed:'failed');}
- from Float;
- flt := u::R;
-
- -- Test if the representation in R is exact
- --den := denom(u)::Float;
- local bin : Union(value1:Integer,failed:'failed');
- bin := retractIfCan(log2(denom(u)::Float));
- bin case value1 and length(numer u)$Integer < (bits() pretend Integer) => {
- flt := normaliseFloat flt;
- exactInterval(flt,flt);
- }
-
- qinterval(flt,flt);
- }
-
- retractIfCan(u:%):Union(value1:Integer,failed:'failed') == {
- not zero? width(u) => [failed];
- retractIfCan inf u;
- }
-
- retract(u:%):Integer == {
- not zero? width(u) =>
- error "attempt to retract a non-Integer interval to an Integer";
- retract inf u;
- }
-
- coerce(u:%):OutputForm ==
- bracket([coerce inf(u), coerce sup(u)]$List(OutputForm));
-
- characteristic:NonNegativeInteger == 0;
-
-
- -- Explicit export from TranscendentalFunctionCategory
- pi():% == qinterval(pi(),pi());
-
- -- From ElementaryFunctionCategory
- log(u:%):% == {
- positive?(u) => qinterval(log inf u, log sup u);
- error "negative logs in interval";
- }
-
- exp(u:%):% == qinterval(exp inf u, exp sup u);
-
- (**)(u:%,v:%):% == {
- zero?(v) => if zero?(u) then error "0**0 is undefined" else 1;
- one?(u) => 1;
- expts : List R := sort [inf(u)**inf(v),sup(u)**sup(v),
- inf(u)**sup(v),sup(u)**inf(v)];
- qinterval(first expts, last expts);
- }
-
- -- From TrigonometricFunctionCategory
-
- -- This function checks whether an interval contains a value of the form
- -- `offset + 2 n pi'.
- local hasTwoPiMultiple(offset:R,Pi:R,i:%):Boolean == {
- import from Integer;
- next : Integer := retract ceiling( (inf(i) - offset)/(2*Pi) );
- contains?(i,offset+2*next*Pi);
- }
-
- -- This function checks whether an interval contains a value of the form
- -- `offset + n pi'.
- local hasPiMultiple(offset:R,Pi:R,i:%):Boolean == {
- import from Integer;
- next : Integer := retract ceiling( (inf(i) - offset)/Pi );
- contains?(i,offset+next*Pi);
- }
-
- sin(u:%):% == {
- import from Integer;
- Pi : R := pi();
- hasOne? : Boolean := hasTwoPiMultiple(Pi/(2::R),Pi,u);
- hasMinusOne? : Boolean := hasTwoPiMultiple(3*Pi/(2::R),Pi,u);
-
- if hasOne? and hasMinusOne? then
- exactInterval(-1,1);
- else {
- vals : List R := sort [sin inf u, sin sup u];
- if hasOne? then
- exactSupInterval(first vals, 1);
- else if hasMinusOne? then
- exactInfInterval(-1,last vals);
- else
- qinterval(first vals, last vals);
- }
- }
-
- cos(u:%):% == {
- Pi : R := pi();
- hasOne? : Boolean := hasTwoPiMultiple(0,Pi,u);
- hasMinusOne? : Boolean := hasTwoPiMultiple(Pi,Pi,u);
-
- if hasOne? and hasMinusOne? then
- exactInterval(-1,1);
- else {
- vals : List R := sort [cos inf u, cos sup u];
- if hasOne? then
- exactSupInterval(first vals, 1);
- else if hasMinusOne? then
- exactInfInterval(-1,last vals);
- else
- qinterval(first vals, last vals);
- }
- }
-
- tan(u:%):% == {
- Pi : R := pi();
- if width(u) > Pi then
- error "Interval contains a singularity"
- else {
- -- Since we know the interval is less than pi wide, monotonicity implies
- -- that there is no singularity. If there is a singularity on a endpoint
- -- of the interval the user will see the error generated by R.
- lo : R := tan inf u;
- hi : R := tan sup u;
-
- lo > hi => error "Interval contains a singularity";
- qinterval(lo,hi);
- }
- }
-
- csc(u:%):% == {
- Pi : R := pi();
- if width(u) > Pi then
- error "Interval contains a singularity"
- else {
- import from Integer;
- -- singularities are at multiples of Pi
- if hasPiMultiple(0,Pi,u) then error "Interval contains a singularity";
- vals : List R := sort [csc inf u, csc sup u];
- if hasTwoPiMultiple(Pi/(2::R),Pi,u) then
- exactInfInterval(1,last vals);
- else if hasTwoPiMultiple(3*Pi/(2::R),Pi,u) then
- exactSupInterval(first vals,-1);
- else
- qinterval(first vals, last vals);
- }
- }
-
- sec(u:%):% == {
- Pi : R := pi();
- if width(u) > Pi then
- error "Interval contains a singularity"
- else {
- import from Integer;
- -- singularities are at Pi/2 + n Pi
- if hasPiMultiple(Pi/(2::R),Pi,u) then
- error "Interval contains a singularity";
- vals : List R := sort [sec inf u, sec sup u];
- if hasTwoPiMultiple(0,Pi,u) then
- exactInfInterval(1,last vals);
- else if hasTwoPiMultiple(Pi,Pi,u) then
- exactSupInterval(first vals,-1);
- else
- qinterval(first vals, last vals);
- }
- }
-
-
- cot(u:%):% == {
- Pi : R := pi();
- if width(u) > Pi then
- error "Interval contains a singularity"
- else {
- -- Since we know the interval is less than pi wide, monotonicity implies
- -- that there is no singularity. If there is a singularity on a endpoint
- -- of the interval the user will see the error generated by R.
- hi : R := cot inf u;
- lo : R := cot sup u;
-
- lo > hi => error "Interval contains a singularity";
- qinterval(lo,hi);
- }
- }
-
- -- From ArcTrigonometricFunctionCategory
-
- asin(u:%):% == {
- lo : R := inf(u);
- hi : R := sup(u);
- if (lo < -1) or (hi > 1) then error "asin only defined on the region -1..1";
- qinterval(asin lo,asin hi);
- }
-
- acos(u:%):% == {
- lo : R := inf(u);
- hi : R := sup(u);
- if (lo < -1) or (hi > 1) then error "acos only defined on the region -1..1";
- qinterval(acos hi,acos lo);
- }
-
- atan(u:%):% == qinterval(atan inf u, atan sup u);
-
- acot(u:%):% == qinterval(acot sup u, acot inf u);
-
- acsc(u:%):% == {
- lo : R := inf(u);
- hi : R := sup(u);
- if ((lo <= -1) and (hi >= -1)) or ((lo <= 1) and (hi >= 1)) then
- error "acsc not defined on the region -1..1";
- qinterval(acsc hi, acsc lo);
- }
-
- asec(u:%):% == {
- lo : R := inf(u);
- hi : R := sup(u);
- if ((lo < -1) and (hi > -1)) or ((lo < 1) and (hi > 1)) then
- error "asec not defined on the region -1..1";
- qinterval(asec lo, asec hi);
- }
-
- -- From HyperbolicFunctionCategory
-
- tanh(u:%):% == qinterval(tanh inf u, tanh sup u);
-
- sinh(u:%):% == qinterval(sinh inf u, sinh sup u);
-
- sech(u:%):% == {
- negative? u => qinterval(sech inf u, sech sup u);
- positive? u => qinterval(sech sup u, sech inf u);
- vals : List R := sort [sech inf u, sech sup u];
- exactSupInterval(first vals,1);
- }
-
- cosh(u:%):% == {
- negative? u => qinterval(cosh sup u, cosh inf u);
- positive? u => qinterval(cosh inf u, cosh sup u);
- vals : List R := sort [cosh inf u, cosh sup u];
- exactInfInterval(1,last vals);
- }
-
- csch(u:%):% == {
- contains?(u,0) => error "csch: singularity at zero";
- qinterval(csch sup u, csch inf u);
- }
-
- coth(u:%):% == {
- contains?(u,0) => error "coth: singularity at zero";
- qinterval(coth sup u, coth inf u);
- }
-
- -- From ArcHyperbolicFunctionCategory
-
- acosh(u:%):% == {
- inf(u)<1 => error "invalid argument: acosh only defined on the region 1..";
- qinterval(acosh inf u, acosh sup u);
- }
-
- acoth(u:%):% == {
- lo : R := inf(u);
- hi : R := sup(u);
- if ((lo <= -1) and (hi >= -1)) or ((lo <= 1) and (hi >= 1)) then
- error "acoth not defined on the region -1..1";
- qinterval(acoth hi, acoth lo);
- }
-
- acsch(u:%):% == {
- contains?(u,0) => error "acsch: singularity at zero";
- qinterval(acsch sup u, acsch inf u);
- }
-
- asech(u:%):% == {
- lo : R := inf(u);
- hi : R := sup(u);
- if (lo <= 0) or (hi > 1) then
- error "asech only defined on the region 0 < x <= 1";
- qinterval(asech hi, asech lo);
- }
-
- asinh(u:%):% == qinterval(asinh inf u, asinh sup u);
-
- atanh(u:%):% == {
- lo : R := inf(u);
- hi : R := sup(u);
- if (lo <= -1) or (hi >= 1) then
- error "atanh only defined on the region -1 < x < 1";
- qinterval(atanh lo, atanh hi);
- }
-
- -- From RadicalCategory
- (**)(u:%,n:Fraction Integer):% == interval(inf(u)**n,sup(u)**n);
-
-}
-
-@
-\section{License}
-<<license>>=
---Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
---All rights reserved.
---
---Redistribution and use in source and binary forms, with or without
---modification, are permitted provided that the following conditions are
---met:
---
--- - Redistributions of source code must retain the above copyright
--- notice, this list of conditions and the following disclaimer.
---
--- - Redistributions in binary form must reproduce the above copyright
--- notice, this list of conditions and the following disclaimer in
--- the documentation and/or other materials provided with the
--- distribution.
---
--- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--- names of its contributors may be used to endorse or promote products
--- derived from this software without specific prior written permission.
---
---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-@
-<<*>>=
-<<license>>
-
-<<IntervalCategory>>
-<<Interval>>
-@
-\eject
-\begin{thebibliography}{99}
-\bibitem{1} nothing
-\end{thebibliography}
-\end{document}