aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/galfactu.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/galfactu.spad.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/algebra/galfactu.spad.pamphlet')
-rw-r--r--src/algebra/galfactu.spad.pamphlet214
1 files changed, 214 insertions, 0 deletions
diff --git a/src/algebra/galfactu.spad.pamphlet b/src/algebra/galfactu.spad.pamphlet
new file mode 100644
index 00000000..f7dacfe9
--- /dev/null
+++ b/src/algebra/galfactu.spad.pamphlet
@@ -0,0 +1,214 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra galfactu.spad}
+\author{Frederic Lehobey}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{package GALFACTU GaloisGroupFactorizationUtilities}
+<<package GALFACTU GaloisGroupFactorizationUtilities>>=
+)abbrev package GALFACTU GaloisGroupFactorizationUtilities
+++ Author: Frederic Lehobey
+++ Date Created: 30 June 1994
+++ Date Last Updated: 19 October 1995
+++ Basic Functions:
+++ Related Constructors:
+++ Also See:
+++ AMS Classifications:
+++ Keywords:
+++ References:
+++ [1] Bernard Beauzamy, Products of polynomials and a priori estimates for
+++ coefficients in polynomial decompositions: a sharp result,
+++ J. Symbolic Computation (1992) 13, 463-472
+++ [2] David W. Boyd, Bounds for the Height of a Factor of a Polynomial in
+++ Terms of Bombieri's Norms: I. The Largest Factor,
+++ J. Symbolic Computation (1993) 16, 115-130
+++ [3] David W. Boyd, Bounds for the Height of a Factor of a Polynomial in
+++ Terms of Bombieri's Norms: II. The Smallest Factor,
+++ J. Symbolic Computation (1993) 16, 131-145
+++ [4] Maurice Mignotte, Some Useful Bounds,
+++ Computing, Suppl. 4, 259-263 (1982), Springer-Verlag
+++ [5] Donald E. Knuth, The Art of Computer Programming, Vol. 2, (Seminumerical
+++ Algorithms) 1st edition, 2nd printing, Addison-Wesley 1971, p. 397-398
+++ [6] Bernard Beauzamy, Vilmar Trevisan and Paul S. Wang, Polynomial
+++ Factorization: Sharp Bounds, Efficient Algorithms,
+++ J. Symbolic Computation (1993) 15, 393-413
+++ [7] Augustin-Lux Cauchy, Exercices de Math\'ematiques Quatri\`eme Ann\'ee.
+++ De Bure Fr\`eres, Paris 1829 (reprinted Oeuvres, II S\'erie, Tome IX,
+++ Gauthier-Villars, Paris, 1891).
+++ Description:
+++ \spadtype{GaloisGroupFactorizationUtilities} provides functions
+++ that will be used by the factorizer.
+
+GaloisGroupFactorizationUtilities(R,UP,F): Exports == Implementation where
+ R : Ring
+ UP : UnivariatePolynomialCategory R
+ F : Join(FloatingPointSystem,RetractableTo(R),Field,
+ TranscendentalFunctionCategory,ElementaryFunctionCategory)
+ N ==> NonNegativeInteger
+ P ==> PositiveInteger
+ Z ==> Integer
+
+ Exports ==> with
+ beauzamyBound: UP -> Z -- See [1]
+ ++ beauzamyBound(p) returns a bound on the larger coefficient of any
+ ++ factor of p.
+ bombieriNorm: UP -> F -- See [1]
+ ++ bombieriNorm(p) returns quadratic Bombieri's norm of p.
+ bombieriNorm: (UP,P) -> F -- See [2] and [3]
+ ++ bombieriNorm(p,n) returns the nth Bombieri's norm of p.
+ rootBound: UP -> Z -- See [4] and [5]
+ ++ rootBound(p) returns a bound on the largest norm of the complex roots
+ ++ of p.
+ singleFactorBound: (UP,N) -> Z -- See [6]
+ ++ singleFactorBound(p,r) returns a bound on the infinite norm of
+ ++ the factor of p with smallest Bombieri's norm. r is a lower bound
+ ++ for the number of factors of p. p shall be of degree higher or equal
+ ++ to 2.
+ singleFactorBound: UP -> Z -- See [6]
+ ++ singleFactorBound(p,r) returns a bound on the infinite norm of
+ ++ the factor of p with smallest Bombieri's norm. p shall be of degree
+ ++ higher or equal to 2.
+ norm: (UP,P) -> F
+ ++ norm(f,p) returns the lp norm of the polynomial f.
+ quadraticNorm: UP -> F
+ ++ quadraticNorm(f) returns the l2 norm of the polynomial f.
+ infinityNorm: UP -> F
+ ++ infinityNorm(f) returns the maximal absolute value of the coefficients
+ ++ of the polynomial f.
+ height: UP -> F
+ ++ height(p) returns the maximal absolute value of the coefficients of
+ ++ the polynomial p.
+ length: UP -> F
+ ++ length(p) returns the sum of the absolute values of the coefficients
+ ++ of the polynomial p.
+
+ Implementation ==> add
+
+ import GaloisGroupUtilities(F)
+
+ height(p:UP):F == infinityNorm(p)
+
+ length(p:UP):F == norm(p,1)
+
+ norm(f:UP,p:P):F ==
+ n : F := 0
+ for c in coefficients f repeat
+ n := n+abs(c::F)**p
+ nthRoot(n,p::N)
+
+ quadraticNorm(f:UP):F == norm(f,2)
+
+ infinityNorm(f:UP):F ==
+ n : F := 0
+ for c in coefficients f repeat
+ n := max(n,c::F)
+ n
+
+ singleFactorBound(p:UP,r:N):Z == -- See [6]
+ n : N := degree p
+ r := max(2,r)
+ n < r => error "singleFactorBound: Bad arguments."
+ nf : F := n :: F
+ num : F := nthRoot(bombieriNorm(p),r)
+ if F has Gamma: F -> F then
+ num := num*nthRoot(Gamma(nf+1$F),2*r)
+ den : F := Gamma(nf/((2*r)::F)+1$F)
+ else
+ num := num*(2::F)**(5/8+n/2)*exp(1$F/(4*nf))
+ den : F := (pi()$F*nf)**(3/8)
+ safeFloor( num/den )
+
+ singleFactorBound(p:UP):Z == singleFactorBound(p,2) -- See [6]
+
+ rootBound(p:UP):Z == -- See [4] and [5]
+ n := degree p
+ zero? n => 0
+ lc := abs(leadingCoefficient(p)::F)
+ b1 : F := 0 -- Mignotte
+ b2 : F := 0 -- Knuth
+ b3 : F := 0 -- Zassenhaus in [5]
+ b4 : F := 0 -- Cauchy in [7]
+ c : F := 0
+ cl : F := 0
+ for i in 1..n repeat
+ c := abs(coefficient(p,(n-i)::N)::F)
+ b1 := max(b1,c)
+ cl := c/lc
+ b2 := max(b2,nthRoot(cl,i))
+ b3 := max(b3,nthRoot(cl/pascalTriangle(n,i),i))
+ b4 := max(b4,nthRoot(n*cl,i))
+ min(1+safeCeiling(b1/lc),min(safeCeiling(2*b2),min(safeCeiling(b3/
+ (nthRoot(2::F,n)-1)),safeCeiling(b4))))
+
+ beauzamyBound(f:UP):Z == -- See [1]
+ d := degree f
+ zero? d => safeFloor bombieriNorm f
+ safeFloor( (bombieriNorm(f)*(3::F)**(3/4+d/2))/
+ (2*sqrt(pi()$F*(d::F))) )
+
+ bombieriNorm(f:UP,p:P):F == -- See [2] and [3]
+ d := degree f
+ b := abs(coefficient(f,0)::F)
+ if zero? d then return b
+ else b := b**p
+ b := b+abs(leadingCoefficient(f)::F)**p
+ dd := (d-1) quo 2
+ for i in 1..dd repeat
+ b := b+(abs(coefficient(f,i)::F)**p+abs(coefficient(f,(d-i)::N)::F)**p)
+ /pascalTriangle(d,i)
+ if even? d then
+ dd := dd+1
+ b := b+abs(coefficient(f, dd::N)::F)**p/pascalTriangle(d,dd)
+ nthRoot(b,p::N)
+
+ bombieriNorm(f:UP):F == bombieriNorm(f,2) -- See [1]
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+<<package GALFACTU GaloisGroupFactorizationUtilities>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}