diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/galfact.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/galfact.spad.pamphlet')
-rw-r--r-- | src/algebra/galfact.spad.pamphlet | 862 |
1 files changed, 862 insertions, 0 deletions
diff --git a/src/algebra/galfact.spad.pamphlet b/src/algebra/galfact.spad.pamphlet new file mode 100644 index 00000000..8d9a6a02 --- /dev/null +++ b/src/algebra/galfact.spad.pamphlet @@ -0,0 +1,862 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra galfact.spad} +\author{Frederic Lehobey} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{package GALFACT GaloisGroupFactorizer} +<<package GALFACT GaloisGroupFactorizer>>= +)abbrev package GALFACT GaloisGroupFactorizer +++ Author: Frederic Lehobey +++ Date Created: 28 June 1994 +++ Date Last Updated: 11 July 1997 +++ Basic Operations: factor +++ Related Domains: +++ Also See: +++ AMS Classifications: +++ Keywords: factorization +++ Examples: +++ References: +++ [1] Bernard Beauzamy, Vilmar Trevisan and Paul S. Wang, Polynomial +++ Factorization: Sharp Bounds, Efficient Algorithms, +++ J. Symbolic Computation (1993) 15, 393-413 +++ [2] John Brillhart, Note on Irreducibility Testing, +++ Mathematics of Computation, vol. 35, num. 35, Oct. 1980, 1379-1381 +++ [3] David R. Musser, On the Efficiency of a Polynomial Irreducibility Test, +++ Journal of the ACM, Vol. 25, No. 2, April 1978, pp. 271-282 +++ Description: \spadtype{GaloisGroupFactorizer} provides functions +++ to factor resolvents. +-- improvements to do : +-- + reformulate the lifting problem in completeFactor -- See [1] (hard) +-- + implement algorithm RC -- See [1] (easy) +-- + use Dedekind's criterion to prove sometimes irreducibility (easy) +-- or even to improve early detection of true factors (hard) +-- + replace Sets by Bits +GaloisGroupFactorizer(UP): Exports == Implementation where + Z ==> Integer + UP: UnivariatePolynomialCategory Z + N ==> NonNegativeInteger + P ==> PositiveInteger + CYC ==> CyclotomicPolynomialPackage() + SUPZ ==> SparseUnivariatePolynomial Z + + ParFact ==> Record(irr: UP, pow: Z) + FinalFact ==> Record(contp: Z, factors: List ParFact) + DDRecord ==> Record(factor: UP, degree: Z) -- a Distinct-Degree factor + DDList ==> List DDRecord + MFact ==> Record(prime: Z,factors: List UP) -- Modular Factors + LR ==> Record(left: UP, right: UP) -- Functional decomposition + + Exports ==> with + makeFR: FinalFact -> Factored UP + ++ makeFR(flist) turns the final factorization of henselFact into a + ++ \spadtype{Factored} object. + degreePartition: DDList -> Multiset N + ++ degreePartition(ddfactorization) returns the degree partition of + ++ the polynomial f modulo p where ddfactorization is the distinct + ++ degree factorization of f computed by + ++ \spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} + ++ for some prime p. + musserTrials: () -> P + ++ musserTrials() returns the number of primes that are tried in + ++ \spadfun{modularFactor}. + musserTrials: P -> P + ++ musserTrials(n) sets to n the number of primes to be tried in + ++ \spadfun{modularFactor} and returns the previous value. + stopMusserTrials: () -> P + ++ stopMusserTrials() returns the bound on the number of factors for + ++ which \spadfun{modularFactor} stops to look for an other prime. You + ++ will have to remember that the step of recombining the extraneous + ++ factors may take up to \spad{2**stopMusserTrials()} trials. + stopMusserTrials: P -> P + ++ stopMusserTrials(n) sets to n the bound on the number of factors for + ++ which \spadfun{modularFactor} stops to look for an other prime. You + ++ will have to remember that the step of recombining the extraneous + ++ factors may take up to \spad{2**n} trials. Returns the previous + ++ value. + numberOfFactors: DDList -> N + ++ numberOfFactors(ddfactorization) returns the number of factors of + ++ the polynomial f modulo p where ddfactorization is the distinct + ++ degree factorization of f computed by + ++ \spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} + ++ for some prime p. + modularFactor: UP -> MFact + ++ modularFactor(f) chooses a "good" prime and returns the factorization + ++ of f modulo this prime in a form that may be used by + ++ \spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero + ++ it means that f has been proved to be irreducible over the integers + ++ or that f is a unit (i.e. 1 or -1). + ++ f shall be primitive (i.e. content(p)=1) and square free (i.e. + ++ without repeated factors). + useSingleFactorBound?: () -> Boolean + ++ useSingleFactorBound?() returns \spad{true} if algorithm with single + ++ factor bound is used for factorization, \spad{false} for algorithm + ++ with overall bound. + useSingleFactorBound: Boolean -> Boolean + ++ useSingleFactorBound(b) chooses the algorithm to be used by the + ++ factorizers: \spad{true} for algorithm with single + ++ factor bound, \spad{false} for algorithm with overall bound. + ++ Returns the previous value. + useEisensteinCriterion?: () -> Boolean + ++ useEisensteinCriterion?() returns \spad{true} if factorizers + ++ check Eisenstein's criterion before factoring. + useEisensteinCriterion: Boolean -> Boolean + ++ useEisensteinCriterion(b) chooses whether factorizers check + ++ Eisenstein's criterion before factoring: \spad{true} for + ++ using it, \spad{false} else. Returns the previous value. + eisensteinIrreducible?: UP -> Boolean + ++ eisensteinIrreducible?(p) returns \spad{true} if p can be + ++ shown to be irreducible by Eisenstein's criterion, + ++ \spad{false} is inconclusive. + tryFunctionalDecomposition?: () -> Boolean + ++ tryFunctionalDecomposition?() returns \spad{true} if + ++ factorizers try functional decomposition of polynomials before + ++ factoring them. + tryFunctionalDecomposition: Boolean -> Boolean + ++ tryFunctionalDecomposition(b) chooses whether factorizers have + ++ to look for functional decomposition of polynomials + ++ (\spad{true}) or not (\spad{false}). Returns the previous value. + factor: UP -> Factored UP + ++ factor(p) returns the factorization of p over the integers. + factor: (UP,N) -> Factored UP + ++ factor(p,r) factorizes the polynomial p using the single factor bound + ++ algorithm and knowing that p has at least r factors. + factor: (UP,List N) -> Factored UP + ++ factor(p,listOfDegrees) factorizes the polynomial p using the single + ++ factor bound algorithm and knowing that p has for possible + ++ splitting of its degree listOfDegrees. + factor: (UP,List N,N) -> Factored UP + ++ factor(p,listOfDegrees,r) factorizes the polynomial p using the single + ++ factor bound algorithm, knowing that p has for possible + ++ splitting of its degree listOfDegrees and that p has at least r + ++ factors. + factor: (UP,N,N) -> Factored UP + ++ factor(p,d,r) factorizes the polynomial p using the single + ++ factor bound algorithm, knowing that d divides the degree of all + ++ factors of p and that p has at least r factors. + factorSquareFree: UP -> Factored UP + ++ factorSquareFree(p) returns the factorization of p which is supposed + ++ not having any repeated factor (this is not checked). + factorSquareFree: (UP,N) -> Factored UP + ++ factorSquareFree(p,r) factorizes the polynomial p using the single + ++ factor bound algorithm and knowing that p has at least r factors. + ++ f is supposed not having any repeated factor (this is not checked). + factorSquareFree: (UP,List N) -> Factored UP + ++ factorSquareFree(p,listOfDegrees) factorizes the polynomial p using + ++ the single factor bound algorithm and knowing that p has for possible + ++ splitting of its degree listOfDegrees. + ++ f is supposed not having any repeated factor (this is not checked). + factorSquareFree: (UP,List N,N) -> Factored UP + ++ factorSquareFree(p,listOfDegrees,r) factorizes the polynomial p using + ++ the single factor bound algorithm, knowing that p has for possible + ++ splitting of its degree listOfDegrees and that p has at least r + ++ factors. + ++ f is supposed not having any repeated factor (this is not checked). + factorSquareFree: (UP,N,N) -> Factored UP + ++ factorSquareFree(p,d,r) factorizes the polynomial p using the single + ++ factor bound algorithm, knowing that d divides the degree of all + ++ factors of p and that p has at least r factors. + ++ f is supposed not having any repeated factor (this is not checked). + factorOfDegree: (P,UP) -> Union(UP,"failed") + ++ factorOfDegree(d,p) returns a factor of p of degree d. + factorOfDegree: (P,UP,N) -> Union(UP,"failed") + ++ factorOfDegree(d,p,r) returns a factor of p of degree + ++ d knowing that p has at least r factors. + factorOfDegree: (P,UP,List N) -> Union(UP,"failed") + ++ factorOfDegree(d,p,listOfDegrees) returns a factor + ++ of p of degree d knowing that p has for possible splitting of its + ++ degree listOfDegrees. + factorOfDegree: (P,UP,List N,N) -> Union(UP,"failed") + ++ factorOfDegree(d,p,listOfDegrees,r) returns a factor + ++ of p of degree d knowing that p has for possible splitting of its + ++ degree listOfDegrees, and that p has at least r factors. + factorOfDegree: (P,UP,List N,N,Boolean) -> Union(UP,"failed") + ++ factorOfDegree(d,p,listOfDegrees,r,sqf) returns a + ++ factor of p of degree d knowing that p has for possible splitting of + ++ its degree listOfDegrees, and that p has at least r factors. + ++ If \spad{sqf=true} the polynomial is assumed to be square free (i.e. + ++ without repeated factors). + henselFact: (UP,Boolean) -> FinalFact + ++ henselFact(p,sqf) returns the factorization of p, the result + ++ is a Record such that \spad{contp=}content p, + ++ \spad{factors=}List of irreducible factors of p with exponent. + ++ If \spad{sqf=true} the polynomial is assumed to be square free (i.e. + ++ without repeated factors). + btwFact: (UP,Boolean,Set N,N) -> FinalFact + ++ btwFact(p,sqf,pd,r) returns the factorization of p, the result + ++ is a Record such that \spad{contp=}content p, + ++ \spad{factors=}List of irreducible factors of p with exponent. + ++ If \spad{sqf=true} the polynomial is assumed to be square free (i.e. + ++ without repeated factors). + ++ pd is the \spadtype{Set} of possible degrees. r is a lower bound for + ++ the number of factors of p. Please do not use this function in your + ++ code because its design may change. + + Implementation ==> add + + fUnion ==> Union("nil", "sqfr", "irred", "prime") + FFE ==> Record(flg:fUnion, fctr:UP, xpnt:Z) -- Flag-Factor-Exponent + DDFact ==> Record(prime:Z, ddfactors:DDList) -- Distinct Degree Factors + HLR ==> Record(plist:List UP, modulo:Z) -- HenselLift Record + + mussertrials: P := 5 + stopmussertrials: P := 8 + usesinglefactorbound: Boolean := true + tryfunctionaldecomposition: Boolean := true + useeisensteincriterion: Boolean := true + + useEisensteinCriterion?():Boolean == useeisensteincriterion + + useEisensteinCriterion(b:Boolean):Boolean == + (useeisensteincriterion,b) := (b,useeisensteincriterion) + b + + tryFunctionalDecomposition?():Boolean == tryfunctionaldecomposition + + tryFunctionalDecomposition(b:Boolean):Boolean == + (tryfunctionaldecomposition,b) := (b,tryfunctionaldecomposition) + b + + useSingleFactorBound?():Boolean == usesinglefactorbound + + useSingleFactorBound(b:Boolean):Boolean == + (usesinglefactorbound,b) := (b,usesinglefactorbound) + b + + stopMusserTrials():P == stopmussertrials + + stopMusserTrials(n:P):P == + (stopmussertrials,n) := (n,stopmussertrials) + n + + musserTrials():P == mussertrials + + musserTrials(n:P):P == + (mussertrials,n) := (n,mussertrials) + n + + import GaloisGroupFactorizationUtilities(Z,UP,Float) + + import GaloisGroupPolynomialUtilities(Z,UP) + + import IntegerPrimesPackage(Z) + import IntegerFactorizationPackage(Z) + + import ModularDistinctDegreeFactorizer(UP) + + eisensteinIrreducible?(f:UP):Boolean == + rf := reductum f + c: Z := content rf + zero? c => false + unit? c => false + lc := leadingCoefficient f + tc := lc + while not zero? rf repeat + tc := leadingCoefficient rf + rf := reductum rf + for p in factors(factor c)$Factored(Z) repeat +-- if (one? p.exponent) and (not zero? (lc rem p.factor)) and + if (p.exponent = 1) and (not zero? (lc rem p.factor)) and + (not zero? (tc rem ((p.factor)**2))) then return true + false + + numberOfFactors(ddlist:DDList):N == + n: N := 0 + d: Z := 0 + for dd in ddlist repeat + n := n + + zero? (d := degree(dd.factor)::Z) => 1 + (d quo dd.degree)::N + n + + -- local function, returns the a Set of shifted elements + shiftSet(s:Set N,shift:N):Set N == set [ e+shift for e in parts s ] + + -- local function, returns the "reductum" of an Integer (as chain of bits) + reductum(n:Z):Z == n-shift(1,length(n)-1) + + -- local function, returns an integer with level lowest bits set to 1 + seed(level:Z):Z == shift(1,level)-1 + + -- local function, returns the next number (as a chain of bit) for + -- factor reconciliation of a given level (which is the number of + -- extraneaous factors involved) or "End of level" if not any + nextRecNum(levels:N,level:Z,n:Z):Union("End of level",Z) == + if (l := length n)<levels then return(n+shift(1,l-1)) + (n=shift(seed(level),levels-level)) => "End of level" + b: Z := 1 + while ((l-b) = (lr := length(n := reductum n)))@Boolean repeat b := b+1 + reductum(n)+shift(seed(b+1),lr) + + -- local function, return the set of N, 0..n + fullSet(n:N):Set N == set [ i for i in 0..n ] + + modularFactor(p:UP):MFact == +-- not one? abs(content(p)) => + not (abs(content(p)) = 1) => + error "modularFactor: the polynomial is not primitive." + zero? (n := degree p) => [0,[p]] + + -- declarations -- + cprime: Z := 2 + trials: List DDFact := empty() + d: Set N := fullSet(n) + dirred: Set N := set [0,n] + s: Set N := empty() + ddlist: DDList := empty() + degfact: N := 0 + nf: N := stopmussertrials+1 + i: Z + + -- Musser, see [3] -- + diffp := differentiate p + for i in 1..mussertrials | nf>stopmussertrials repeat + -- test 1: cprime divides leading coefficient + -- test 2: "bad" primes: (in future: use Dedekind's Criterion) + while (zero? ((leadingCoefficient p) rem cprime)) or + (not zero? degree gcd(p,diffp,cprime)) repeat + cprime := nextPrime(cprime) + ddlist := ddFact(p,cprime) + -- degree compatibility: See [3] -- + s := set [0] + for f in ddlist repeat + degfact := f.degree::N + if not zero? degfact then + for j in 1..(degree(f.factor) quo degfact) repeat + s := union(s, shiftSet(s,degfact)) + trials := cons([cprime,ddlist]$DDFact,trials) + d := intersect(d, s) + d = dirred => return [0,[p]] -- p is irreducible + cprime := nextPrime(cprime) + nf := numberOfFactors ddlist + + -- choose the one with the smallest number of factors + choice := first trials + nfc := numberOfFactors(choice.ddfactors) + for t in rest trials repeat + nf := numberOfFactors(t.ddfactors) + if nf<nfc or ((nf=nfc) and (t.prime>choice.prime)) then + nfc := nf + choice := t + cprime := choice.prime + -- HenselLift$GHENSEL expects the degree 0 factor first + [cprime,separateFactors(choice.ddfactors,cprime)] + + degreePartition(ddlist:DDList):Multiset N == + dp: Multiset N := empty() + d: N := 0 + dd: N := 0 + for f in ddlist repeat + zero? (d := degree(f.factor)) => dp := insert!(0,dp) + dd := f.degree::N + dp := insert!(dd,dp,d quo dd) + dp + + import GeneralHenselPackage(Z,UP) + import UnivariatePolynomialDecompositionPackage(Z,UP) + import BrillhartTests(UP) -- See [2] + + -- local function, finds the factors of f primitive, square-free, with + -- positive leading coefficient and non zero trailing coefficient, + -- using the overall bound technique. If pdecomp is true then look + -- for a functional decomposition of f. + henselfact(f:UP,pdecomp:Boolean):List UP == + if brillhartIrreducible? f or + (useeisensteincriterion => eisensteinIrreducible? f ; false) + then return [f] + cf: Union(LR,"failed") + if pdecomp and tryfunctionaldecomposition then + cf := monicDecomposeIfCan f + else + cf := "failed" + cf case "failed" => + m := modularFactor f + zero? (cprime := m.prime) => m.factors + b: P := (2*leadingCoefficient(f)*beauzamyBound(f)) :: P + completeHensel(f,m.factors,cprime,b) + lrf := cf::LR + "append"/[ henselfact(g(lrf.right),false) for g in + henselfact(lrf.left,true) ] + + -- local function, returns the complete factorization of its arguments, + -- using the single-factor bound technique + completeFactor(f:UP,lf:List UP,cprime:Z,pk:P,r:N,d:Set N):List UP == + lc := leadingCoefficient f + f0 := coefficient(f,0) + ltrue: List UP := empty() + found? := true + degf: N := 0 + degg: N := 0 + g0: Z := 0 + g: UP := 0 + rg: N := 0 + nb: Z := 0 + lg: List UP := empty() + b: P := 1 + dg: Set N := empty() + llg: HLR := [empty(),0] + levels: N := #lf + level: Z := 1 + ic: Union(Z,"End of level") := 0 + i: Z := 0 + while level<levels repeat + -- try all possible factors with degree in d + ic := seed(level) + while ((not found?) and (ic case Z)) repeat + i := ic::Z + degg := 0 + g0 := 1 -- LC algorithm + for j in 1..levels repeat + if bit?(i,j-1) then + degg := degg+degree lf.j + g0 := g0*coefficient(lf.j,0) -- LC algorithm + g0 := symmetricRemainder(lc*g0,pk) -- LC algorithm + if member?(degg,d) and (((lc*f0) exquo g0) case Z) then + -- LC algorithm + g := lc::UP -- build the possible factor -- LC algorithm + for j in 1..levels repeat if bit?(i,j-1) then g := g*lf.j + g := primitivePart reduction(g,pk) + f1 := f exquo g + if f1 case UP then -- g is a true factor + found? := true + -- remove the factors of g from lf + nb := 1 + for j in 1..levels repeat + if bit?(i,j-1) then + swap!(lf,j,nb) + nb := nb+1 + lg := lf + lf := rest(lf,level::N) + setrest!(rest(lg,(level-1)::N),empty()$List(UP)) + f := f1::UP + lc := leadingCoefficient f + f0 := coefficient(f,0) + -- is g irreducible? + dg := select(#1<=degg,d) + if not(dg=set [0,degg]) then -- implies degg >= 2 + rg := max(2,r+level-levels)::N + b := (2*leadingCoefficient(g)*singleFactorBound(g,rg)) :: P + if b>pk and (not brillhartIrreducible?(g)) and + (useeisensteincriterion => not eisensteinIrreducible?(g) ; + true) + then + -- g may be reducible + llg := HenselLift(g,lg,cprime,b) + gpk: P := (llg.modulo)::P + -- In case exact factorisation has been reached by + -- HenselLift before coefficient bound. + if gpk<b then + lg := llg.plist + else + lg := completeFactor(g,llg.plist,cprime,gpk,rg,dg) + else lg := [ g ] -- g irreducible + else lg := [ g ] -- g irreducible + ltrue := append(ltrue,lg) + r := max(2,(r-#lg))::N + degf := degree f + d := select(#1<=degf,d) + if degf<=1 then -- lf exhausted +-- if one? degf then + if (degf = 1) then + ltrue := cons(f,ltrue) + return ltrue -- 1st exit, all factors found + else -- can we go on with the same pk? + b := (2*lc*singleFactorBound(f,r)) :: P + if b>pk then -- unlucky: no we can't + llg := HenselLift(f,lf,cprime,b) -- I should reformulate + -- the lifting probleme, but hadn't time for that. + -- In any case, such case should be quite exceptional. + lf := llg.plist + pk := (llg.modulo)::P + -- In case exact factorisation has been reached by + -- HenselLift before coefficient bound. + if pk<b then return append(lf,ltrue) -- 2nd exit + level := 1 + ic := nextRecNum(levels,level,i) + if found? then + levels := #lf + found? := false + if not (ic case Z) then level := level+1 + cons(f,ltrue) -- 3rd exit, the last factor was irreducible but not "true" + + -- local function, returns the set of elements "divided" by an integer + divideSet(s:Set N, n:N):Set N == + l: List N := [ 0 ] + for e in parts s repeat + if (ee := (e exquo n)$N) case N then l := cons(ee::N,l) + set(l) + + -- Beauzamy-Trevisan-Wang FACTOR, see [1] with some refinements + -- and some differences. f is assumed to be primitive, square-free + -- and with positive leading coefficient. If pdecomp is true then + -- look for a functional decomposition of f. + btwFactor(f:UP,d:Set N,r:N,pdecomp:Boolean):List UP == + df := degree f + not (max(d) = df) => error "btwFact: Bad arguments" + reverse?: Boolean := false + negativelc?: Boolean := false + + (d = set [0,df]) => [ f ] + if abs(coefficient(f,0))<abs(leadingCoefficient(f)) then + f := reverse f + reverse? := true + brillhartIrreducible? f or + (useeisensteincriterion => eisensteinIrreducible?(f) ; false) => + if reverse? then [ reverse f ] else [ f ] + if leadingCoefficient(f)<0 then + f := -f + negativelc? := true + cf: Union(LR,"failed") + if pdecomp and tryfunctionaldecomposition then + cf := monicDecomposeIfCan f + else + cf := "failed" + if cf case "failed" then + m := modularFactor f + zero? (cprime := m.prime) => + if reverse? then + if negativelc? then return [ -reverse f ] + else return [ reverse f ] + else if negativelc? then return [ -f ] + else return [ f ] + if noLinearFactor? f then d := remove(1,d) + lc := leadingCoefficient f + f0 := coefficient(f,0) + b: P := (2*lc*singleFactorBound(f,r)) :: P -- LC algorithm + lm := HenselLift(f,m.factors,cprime,b) + lf := lm.plist + pk: P := (lm.modulo)::P + if ground? first lf then lf := rest lf + -- in case exact factorisation has been reached by HenselLift + -- before coefficient bound + if not pk < b then lf := completeFactor(f,lf,cprime,pk,r,d) + else + lrf := cf::LR + dh := degree lrf.right + lg := btwFactor(lrf.left,divideSet(d,dh),2,true) + lf: List UP := empty() + for i in 1..#lg repeat + g := lg.i + dgh := (degree g)*dh + df := subtractIfCan(df,dgh)::N + lfg := btwFactor(g(lrf.right), + select(#1<=dgh,d),max(2,r-df)::N,false) + lf := append(lf,lfg) + r := max(2,r-#lfg)::N + if reverse? then lf := [ reverse(fact) for fact in lf ] + for i in 1..#lf repeat + if leadingCoefficient(lf.i)<0 then lf.i := -lf.i + -- because we assume f with positive leading coefficient + lf + + makeFR(flist:FinalFact):Factored UP == + ctp := factor flist.contp + fflist: List FFE := empty() + for ff in flist.factors repeat + fflist := cons(["prime", ff.irr, ff.pow]$FFE, fflist) + for fc in factorList ctp repeat + fflist := cons([fc.flg, fc.fctr::UP, fc.xpnt]$FFE, fflist) + makeFR(unit(ctp)::UP, fflist) + + import IntegerRoots(Z) + + -- local function, factorizes a quadratic polynomial + quadratic(p:UP):List UP == + a := leadingCoefficient p + b := coefficient(p,1) + d := b**2-4*a*coefficient(p,0) + r := perfectSqrt(d) + r case "failed" => [p] + b := b+(r::Z) + a := 2*a + d := gcd(a,b) +-- if not one? d then + if not (d = 1) then + a := a quo d + b := b quo d + f: UP := monomial(a,1)+monomial(b,0) + cons(f,[(p exquo f)::UP]) + + isPowerOf2(n:Z): Boolean == + n = 1 => true + qr: Record(quotient: Z, remainder: Z) := divide(n,2) + qr.remainder = 1 => false + isPowerOf2 qr.quotient + + subMinusX(supPol: SUPZ): UP == + minusX: SUPZ := monomial(-1,1)$SUPZ + unmakeSUP(elt(supPol,minusX)$SUPZ) + + henselFact(f:UP, sqf:Boolean):FinalFact == + factorlist: List(ParFact) := empty() + + -- make m primitive + c: Z := content f + f := (f exquo c)::UP + + -- make the leading coefficient positive + if leadingCoefficient f < 0 then + c := -c + f := -f + + -- is x**d factor of f + if (d := minimumDegree f) > 0 then + f := monicDivide(f,monomial(1,d)).quotient + factorlist := [[monomial(1,1),d]$ParFact] + + d := degree f + + -- is f constant? + zero? d => [c,factorlist]$FinalFact + + -- is f linear? +-- one? d => [c,cons([f,1]$ParFact,factorlist)]$FinalFact + (d = 1) => [c,cons([f,1]$ParFact,factorlist)]$FinalFact + + lcPol: UP := leadingCoefficient(f) :: UP + + -- is f cyclotomic (x**n - 1)? + -lcPol = reductum(f) => -- if true, both will = 1 + for fac in map(unmakeSUP(#1)$UP, + cyclotomicDecomposition(d)$CYC)$ListFunctions2(SUPZ,UP) repeat + factorlist := cons([fac,1]$ParFact,factorlist) + [c,factorlist]$FinalFact + + -- is f odd cyclotomic (x**(2*n+1) + 1)? + odd?(d) and (lcPol = reductum(f)) => + for sfac in cyclotomicDecomposition(d)$CYC repeat + fac := subMinusX sfac + if leadingCoefficient fac < 0 then fac := -fac + factorlist := cons([fac,1]$ParFact,factorlist) + [c,factorlist]$FinalFact + + -- is the poly of the form x**n + 1 with n a power of 2? + -- if so, then irreducible + isPowerOf2(d) and (lcPol = reductum(f)) => + factorlist := cons([f,1]$ParFact,factorlist) + [c,factorlist]$FinalFact + + -- other special cases to implement... + + -- f is square-free : + sqf => [c, append([[pf,1]$ParFact for pf in henselfact(f,true)], + factorlist)]$FinalFact + + -- f is not square-free : + sqfflist := factors squareFree f + for sqfr in sqfflist repeat + mult := sqfr.exponent + sqff := sqfr.factor + d := degree sqff +-- one? d => factorlist := cons([sqff,mult]$ParFact,factorlist) + (d = 1) => factorlist := cons([sqff,mult]$ParFact,factorlist) + d=2 => + factorlist := append([[pf,mult]$ParFact for pf in quadratic(sqff)], + factorlist) + factorlist := append([[pf,mult]$ParFact for pf in + henselfact(sqff,true)],factorlist) + [c,factorlist]$FinalFact + + btwFact(f:UP, sqf:Boolean, fd:Set N, r:N):FinalFact == + d := degree f + not(max(fd)=d) => error "btwFact: Bad arguments" + factorlist: List(ParFact) := empty() + + -- make m primitive + c: Z := content f + f := (f exquo c)::UP + + -- make the leading coefficient positive + if leadingCoefficient f < 0 then + c := -c + f := -f + + -- is x**d factor of f + if (maxd := minimumDegree f) > 0 then + f := monicDivide(f,monomial(1,maxd)).quotient + factorlist := [[monomial(1,1),maxd]$ParFact] + r := max(2,r-maxd)::N + d := subtractIfCan(d,maxd)::N + fd := select(#1<=d,fd) + + -- is f constant? + zero? d => [c,factorlist]$FinalFact + + -- is f linear? +-- one? d => [c,cons([f,1]$ParFact,factorlist)]$FinalFact + (d = 1) => [c,cons([f,1]$ParFact,factorlist)]$FinalFact + + lcPol: UP := leadingCoefficient(f) :: UP + + -- is f cyclotomic (x**n - 1)? + -lcPol = reductum(f) => -- if true, both will = 1 + for fac in map(unmakeSUP(#1)$UP, + cyclotomicDecomposition(d)$CYC)$ListFunctions2(SUPZ,UP) repeat + factorlist := cons([fac,1]$ParFact,factorlist) + [c,factorlist]$FinalFact + + -- is f odd cyclotomic (x**(2*n+1) + 1)? + odd?(d) and (lcPol = reductum(f)) => + for sfac in cyclotomicDecomposition(d)$CYC repeat + fac := subMinusX sfac + if leadingCoefficient fac < 0 then fac := -fac + factorlist := cons([fac,1]$ParFact,factorlist) + [c,factorlist]$FinalFact + + -- is the poly of the form x**n + 1 with n a power of 2? + -- if so, then irreducible + isPowerOf2(d) and (lcPol = reductum(f)) => + factorlist := cons([f,1]$ParFact,factorlist) + [c,factorlist]$FinalFact + + -- other special cases to implement... + + -- f is square-free : + sqf => [c, append([[pf,1]$ParFact for pf in btwFactor(f,fd,r,true)], + factorlist)]$FinalFact + + -- f is not square-free : + sqfflist := factors squareFree(f) +-- if one?(#(sqfflist)) then -- indeed f was a power of a square-free + if ((#(sqfflist)) = 1) then -- indeed f was a power of a square-free + r := max(r quo ((first sqfflist).exponent),2)::N + else + r := 2 + for sqfr in sqfflist repeat + mult := sqfr.exponent + sqff := sqfr.factor + d := degree sqff +-- one? d => + (d = 1) => + factorlist := cons([sqff,mult]$ParFact,factorlist) + maxd := (max(fd)-mult)::N + fd := select(#1<=maxd,fd) + d=2 => + factorlist := append([[pf,mult]$ParFact for pf in quadratic(sqff)], + factorlist) + maxd := (max(fd)-2*mult)::N + fd := select(#1<=maxd,fd) + factorlist := append([[pf,mult]$ParFact for pf in + btwFactor(sqff,select(#1<=d,fd),r,true)],factorlist) + maxd := (max(fd)-d*mult)::N + fd := select(#1<=maxd,fd) + [c,factorlist]$FinalFact + + factor(f:UP):Factored UP == + makeFR + usesinglefactorbound => btwFact(f,false,fullSet(degree f),2) + henselFact(f,false) + + -- local function, returns true if the sum of the elements of the list + -- is not the degree. + errorsum?(d:N,ld:List N):Boolean == not (d = +/ld) + + -- local function, turns list of degrees into a Set + makeSet(ld:List N):Set N == + s := set [0] + for d in ld repeat s := union(s,shiftSet(s,d)) + s + + factor(f:UP,ld:List N,r:N):Factored UP == + errorsum?(degree f,ld) => error "factor: Bad arguments" + makeFR btwFact(f,false,makeSet(ld),r) + + factor(f:UP,r:N):Factored UP == makeFR btwFact(f,false,fullSet(degree f),r) + + factor(f:UP,ld:List N):Factored UP == factor(f,ld,2) + + factor(f:UP,d:N,r:N):Factored UP == + n := (degree f) exquo d + n case "failed" => error "factor: Bad arguments" + factor(f,new(n::N,d)$List(N),r) + + factorSquareFree(f:UP):Factored UP == + makeFR + usesinglefactorbound => btwFact(f,true,fullSet(degree f),2) + henselFact(f,true) + + factorSquareFree(f:UP,ld:List(N),r:N):Factored UP == + errorsum?(degree f,ld) => error "factorSquareFree: Bad arguments" + makeFR btwFact(f,true,makeSet(ld),r) + + factorSquareFree(f:UP,r:N):Factored UP == + makeFR btwFact(f,true,fullSet(degree f),r) + + factorSquareFree(f:UP,ld:List N):Factored UP == factorSquareFree(f,ld,2) + + factorSquareFree(f:UP,d:N,r:N):Factored UP == + n := (degree f) exquo d + n case "failed" => error "factorSquareFree: Bad arguments" + factorSquareFree(f,new(n::N,d)$List(N),r) + + factorOfDegree(d:P,p:UP,ld:List N,r:N,sqf:Boolean):Union(UP,"failed") == + dp := degree p + errorsum?(dp,ld) => error "factorOfDegree: Bad arguments" +-- (one? (d::N)) and noLinearFactor?(p) => "failed" + ((d::N) = 1) and noLinearFactor?(p) => "failed" + lf := btwFact(p,sqf,makeSet(ld),r).factors + for f in lf repeat + degree(f.irr)=d => return f.irr + "failed" + + factorOfDegree(d:P,p:UP,ld:List N,r:N):Union(UP,"failed") == + factorOfDegree(d,p,ld,r,false) + + factorOfDegree(d:P,p:UP,r:N):Union(UP,"failed") == + factorOfDegree(d,p,new(degree p,1)$List(N),r,false) + + factorOfDegree(d:P,p:UP,ld:List N):Union(UP,"failed") == + factorOfDegree(d,p,ld,2,false) + + factorOfDegree(d:P,p:UP):Union(UP,"failed") == + factorOfDegree(d,p,new(degree p,1)$List(N),2,false) + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<package GALFACT GaloisGroupFactorizer>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |