aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/fs2expxp.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2011-03-12 17:04:43 +0000
committerdos-reis <gdr@axiomatics.org>2011-03-12 17:04:43 +0000
commit52fddea19454dc2b9bcb54c6edd5a4cd4f5765a9 (patch)
tree4b13ccc6d57c7c1ee615c83615b246c98eae388a /src/algebra/fs2expxp.spad.pamphlet
parent42d38bee45a64edfc12641053e58581c20584363 (diff)
downloadopen-axiom-52fddea19454dc2b9bcb54c6edd5a4cd4f5765a9.tar.gz
* src/algebra/: Systematically use negative? when comparing for
less than 0.
Diffstat (limited to 'src/algebra/fs2expxp.spad.pamphlet')
-rw-r--r--src/algebra/fs2expxp.spad.pamphlet8
1 files changed, 4 insertions, 4 deletions
diff --git a/src/algebra/fs2expxp.spad.pamphlet b/src/algebra/fs2expxp.spad.pamphlet
index 15fa5661..15b46ca9 100644
--- a/src/algebra/fs2expxp.spad.pamphlet
+++ b/src/algebra/fs2expxp.spad.pamphlet
@@ -342,7 +342,7 @@ FunctionSpaceToExponentialExpansion(R,FE,x,cen):_
-- If the series has order zero and the constant term a0 of the
-- series involves x, the function tries to expand exp(a0) as
-- a power series.
- (deg := order(ups,1)) < 0 =>
+ negative?(deg := order(ups,1)) =>
-- this "can't happen"
error "exp of function with sigularity"
deg > 0 => [exp(ups)]
@@ -385,7 +385,7 @@ FunctionSpaceToExponentialExpansion(R,FE,x,cen):_
-- check to see if lowest order coefficient is a negative rational
negRat? : Boolean :=
((rat := ratIfCan coef) case RN) =>
- (rat :: RN) < 0 => true
+ negative?(rat :: RN) => true
false
false
logTerm : FE :=
@@ -423,7 +423,7 @@ FunctionSpaceToExponentialExpansion(R,FE,x,cen):_
(f := retractIfCan(xxp)@Union(UPXS,"failed")) case "failed" =>
stateProblem(fcnName,"multiply nested exponential")
upxs := f :: UPXS
- (deg := order(upxs,1)) < 0 =>
+ negative? (deg := order(upxs,1)) =>
stateProblem(fcnName,"essential singularity")
deg > 0 => [fcn(upxs) :: UPXS :: XXP]
lc := coefficient(upxs,0); xOpList := opsInvolvingX lc
@@ -532,7 +532,7 @@ FunctionSpaceToExponentialExpansion(R,FE,x,cen):_
yCoef := coefficient(y,-1)
[(monomial(log yCoef,0)+integrate(y - monomial(yCoef,-1)$UPXS)) :: XXP]
cc : FE :=
- ord < 0 =>
+ negative? ord =>
(rn := ratIfCan(ord :: FE)) case "failed" =>
-- this condition usually won't occur because exponents will
-- be integers or rational numbers