aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/fparfrac.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/fparfrac.spad.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/algebra/fparfrac.spad.pamphlet')
-rw-r--r--src/algebra/fparfrac.spad.pamphlet232
1 files changed, 232 insertions, 0 deletions
diff --git a/src/algebra/fparfrac.spad.pamphlet b/src/algebra/fparfrac.spad.pamphlet
new file mode 100644
index 00000000..9afe1d78
--- /dev/null
+++ b/src/algebra/fparfrac.spad.pamphlet
@@ -0,0 +1,232 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra fparfrac.spad}
+\author{Manuel Bronstein}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{domain FPARFRAC FullPartialFractionExpansion}
+<<domain FPARFRAC FullPartialFractionExpansion>>=
+)abbrev domain FPARFRAC FullPartialFractionExpansion
+++ Full partial fraction expansion of rational functions
+++ Author: Manuel Bronstein
+++ Date Created: 9 December 1992
+++ Date Last Updated: 6 October 1993
+++ References: M.Bronstein & B.Salvy,
+++ Full Partial Fraction Decomposition of Rational Functions,
+++ in Proceedings of ISSAC'93, Kiev, ACM Press.
+FullPartialFractionExpansion(F, UP): Exports == Implementation where
+ F : Join(Field, CharacteristicZero)
+ UP : UnivariatePolynomialCategory F
+
+ N ==> NonNegativeInteger
+ Q ==> Fraction Integer
+ O ==> OutputForm
+ RF ==> Fraction UP
+ SUP ==> SparseUnivariatePolynomial RF
+ REC ==> Record(exponent: N, center: UP, num: UP)
+ ODV ==> OrderlyDifferentialVariable Symbol
+ ODP ==> OrderlyDifferentialPolynomial UP
+ ODF ==> Fraction ODP
+ FPF ==> Record(polyPart: UP, fracPart: List REC)
+
+ Exports ==> Join(SetCategory, ConvertibleTo RF) with
+ "+": (UP, $) -> $
+ ++ p + x returns the sum of p and x
+ fullPartialFraction: RF -> $
+ ++ fullPartialFraction(f) returns \spad{[p, [[j, Dj, Hj]...]]} such that
+ ++ \spad{f = p(x) + \sum_{[j,Dj,Hj] in l} \sum_{Dj(a)=0} Hj(a)/(x - a)\^j}.
+ polyPart: $ -> UP
+ ++ polyPart(f) returns the polynomial part of f.
+ fracPart: $ -> List REC
+ ++ fracPart(f) returns the list of summands of the fractional part of f.
+ construct: List REC -> $
+ ++ construct(l) is the inverse of fracPart.
+ differentiate: $ -> $
+ ++ differentiate(f) returns the derivative of f.
+ D: $ -> $
+ ++ D(f) returns the derivative of f.
+ differentiate: ($, N) -> $
+ ++ differentiate(f, n) returns the n-th derivative of f.
+ D: ($, NonNegativeInteger) -> $
+ ++ D(f, n) returns the n-th derivative of f.
+
+ Implementation ==> add
+ Rep := FPF
+
+ fullParFrac: (UP, UP, UP, N) -> List REC
+ outputexp : (O, N) -> O
+ output : (N, UP, UP) -> O
+ REC2RF : (UP, UP, N) -> RF
+ UP2SUP : UP -> SUP
+ diffrec : REC -> REC
+ FP2O : List REC -> O
+
+-- create a differential variable
+ u := new()$Symbol
+ u0 := makeVariable(u, 0)$ODV
+ alpha := u::O
+ x := monomial(1, 1)$UP
+ xx := x::O
+ zr := (0$N)::O
+
+ construct l == [0, l]
+ D r == differentiate r
+ D(r, n) == differentiate(r,n)
+ polyPart f == f.polyPart
+ fracPart f == f.fracPart
+ p:UP + f:$ == [p + polyPart f, fracPart f]
+
+ differentiate f ==
+ differentiate(polyPart f) + construct [diffrec rec for rec in fracPart f]
+
+ differentiate(r, n) ==
+ for i in 1..n repeat r := differentiate r
+ r
+
+-- diffrec(sum_{rec.center(a) = 0} rec.num(a) / (x - a)^e) =
+-- sum_{rec.center(a) = 0} -e rec.num(a) / (x - a)^{e+1}
+-- where e = rec.exponent
+ diffrec rec ==
+ e := rec.exponent
+ [e + 1, rec.center, - e * rec.num]
+
+ convert(f:$):RF ==
+ ans := polyPart(f)::RF
+ for rec in fracPart f repeat
+ ans := ans + REC2RF(rec.center, rec.num, rec.exponent)
+ ans
+
+ UP2SUP p ==
+ map(#1::UP::RF, p)$UnivariatePolynomialCategoryFunctions2(F, UP, RF, SUP)
+
+ -- returns Trace_k^k(a) (h(a) / (x - a)^n) where d(a) = 0
+ REC2RF(d, h, n) ==
+-- one?(m := degree d) =>
+ ((m := degree d) = 1) =>
+ a := - (leadingCoefficient reductum d) / (leadingCoefficient d)
+ h(a)::UP / (x - a::UP)**n
+ dd := UP2SUP d
+ hh := UP2SUP h
+ aa := monomial(1, 1)$SUP
+ p := (x::RF::SUP - aa)**n rem dd
+ rec := extendedEuclidean(p, dd, hh)::Record(coef1:SUP, coef2:SUP)
+ t := rec.coef1 -- we want Trace_k^k(a)(t) now
+ ans := coefficient(t, 0)
+ for i in 1..degree(d)-1 repeat
+ t := (t * aa) rem dd
+ ans := ans + coefficient(t, i)
+ ans
+
+ fullPartialFraction f ==
+ qr := divide(numer f, d := denom f)
+ qr.quotient + construct concat
+ [fullParFrac(qr.remainder, d, rec.factor, rec.exponent::N)
+ for rec in factors squareFree denom f]
+
+ fullParFrac(a, d, q, n) ==
+ ans:List REC := empty()
+ em := e := d quo (q ** n)
+ rec := extendedEuclidean(e, q, 1)::Record(coef1:UP,coef2:UP)
+ bm := b := rec.coef1 -- b = inverse of e modulo q
+ lvar:List(ODV) := [u0]
+ um := 1::ODP
+ un := (u1 := u0::ODP)**n
+ lval:List(UP) := [q1 := q := differentiate(q0 := q)]
+ h:ODF := a::ODP / (e * un)
+ rec := extendedEuclidean(q1, q0, 1)::Record(coef1:UP,coef2:UP)
+ c := rec.coef1 -- c = inverse of q' modulo q
+ cm := 1::UP
+ cn := (c ** n) rem q0
+ for m in 1..n repeat
+ p := retract(em * un * um * h)@ODP
+ pp := retract(eval(p, lvar, lval))@UP
+ h := inv(m::Q) * differentiate h
+ q := differentiate q
+ lvar := concat(makeVariable(u, m), lvar)
+ lval := concat(inv((m+1)::F) * q, lval)
+ qq := q0 quo gcd(pp, q0) -- new center
+ if (degree(qq) > 0) then
+ ans := concat([(n + 1 - m)::N, qq, (pp * bm * cn * cm) rem qq], ans)
+ cm := (c * cm) rem q0 -- cm = c**m modulo q now
+ um := u1 * um -- um = u**m now
+ em := e * em -- em = e**{m+1} now
+ bm := (b * bm) rem q0 -- bm = b**{m+1} modulo q now
+ ans
+
+ coerce(f:$):O ==
+ ans := FP2O(l := fracPart f)
+ zero?(p := polyPart f) =>
+ empty? l => (0$N)::O
+ ans
+ p::O + ans
+
+ FP2O l ==
+ empty? l => empty()
+ rec := first l
+ ans := output(rec.exponent, rec.center, rec.num)
+ for rec in rest l repeat
+ ans := ans + output(rec.exponent, rec.center, rec.num)
+ ans
+
+ output(n, d, h) ==
+-- one? degree d =>
+ (degree d) = 1 =>
+ a := - leadingCoefficient(reductum d) / leadingCoefficient(d)
+ h(a)::O / outputexp((x - a::UP)::O, n)
+ sum(outputForm(makeSUP h, alpha) / outputexp(xx - alpha, n),
+ outputForm(makeSUP d, alpha) = zr)
+
+ outputexp(f, n) ==
+-- one? n => f
+ (n = 1) => f
+ f ** (n::O)
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+<<domain FPARFRAC FullPartialFractionExpansion>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}