aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/float.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-02-17 00:21:53 +0000
committerdos-reis <gdr@axiomatics.org>2010-02-17 00:21:53 +0000
commite5fb9d979a16047d62bbe954ee08577088cdb497 (patch)
tree3b647c8756c21b10e5a00d8bf589b2bc754a8cce /src/algebra/float.spad.pamphlet
parent36563244081c887f2f68eea73c5088674f7d8f37 (diff)
downloadopen-axiom-e5fb9d979a16047d62bbe954ee08577088cdb497.tar.gz
* interp/compiler.boot (compAtomWithModemap): Reject niladic
functions used as constants. * algebra/aggcat.spad.pamphlet (IndexedAggregate): Add parenthesis for call to niladic function 'void'. * algebra/algext.spad.pamphlet (SimpleAlgebraicExtension): Likewise. * algebra/curve.spad.pamphlet (RadicalFunctionField): Likewise. (AlgebraicFunctionField): Likewise. * algebra/permgrps.spad.pamphlet (PermutationGroup): Likewise. * algebra/pfo.spad.pamphlet (FunctionSpaceReduce): Likewise. * algebra/setorder.spad.pamphlet: Likewise. * algebra/ffcat.spad.pamphlet (FiniteFieldCategory): Add parenthesis for call to niladic function 'representationType'. * algebra/ffnb.spad.pamphlet (FiniteFieldNormalBasisExtensionByPolynomial): Likewise for normalElement. * algebra/float.spad.pamphlet (Float): Likewise for OMencodingXML, pi, log2, log10, digits. * algebra/fnla.spad.pamphlet (FreeNilpotentLie): Likewise for dimension. * algebra/fraction.spad.pamphlet (Fraction): Likewise for OMencodingXML. * algebra/gaussian.spad.pamphlet (Complex): Likewise. * algebra/integer.spad.pamphlet (Integer): Likewise. * algebra/list.spad.pamphlet (List): Likewise. * algebra/sf.spad.pamphlet (DoubleFloat): Likewise. * algebra/si.spad.pamphlet (SingleInteger): Likewise. * algebra/string.spad.pamphlet (String): Likewise. * algebra/symbol.spad.pamphlet (Symbol): Likewise. * algebra/intrf.spad.pamphlet (TranscendentalIntegration): Likewise for empty. * algebra/kl.spad.pamphlet (SortedCache): Likewise for cache, void. * algebra/newdata.spad.pamphlet (TabulatedComputationPackage): Likewise for usingTable?. * algebra/omserver.spad.pamphlet (OpenMathServerPackage): Likewise for OMencodingUnknown. * algebra/plot.spad.pamphlet (Plot): Likewise for adaptive?. * algebra/plot3d.spad.pamphlet (Plot3D): Likewise for adaptive3D?.
Diffstat (limited to 'src/algebra/float.spad.pamphlet')
-rw-r--r--src/algebra/float.spad.pamphlet38
1 files changed, 19 insertions, 19 deletions
diff --git a/src/algebra/float.spad.pamphlet b/src/algebra/float.spad.pamphlet
index 1f0bc0bd..32b0ae98 100644
--- a/src/algebra/float.spad.pamphlet
+++ b/src/algebra/float.spad.pamphlet
@@ -221,7 +221,7 @@ Float():
OMwrite(x: %): String ==
s: String := ""
sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
- dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
+ dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML())
OMputObject(dev)
writeOMFloat(dev, x)
OMputEndObject(dev)
@@ -232,7 +232,7 @@ Float():
OMwrite(x: %, wholeObj: Boolean): String ==
s: String := ""
sp := OM_-STRINGTOSTRINGPTR(s)$Lisp
- dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML)
+ dev: OpenMathDevice := OMopenString(sp pretend String, OMencodingXML())
if wholeObj then
OMputObject(dev)
writeOMFloat(dev, x)
@@ -290,7 +290,7 @@ Float():
inc 4
r := if zero? fractionPart x and x < [bits(),0] then atanInverse wholePart x
else atan(1/x)
- r := pi/2 - r
+ r := pi()/2 - r
dec 4
return normalize r
-- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
@@ -330,9 +330,9 @@ Float():
sin x ==
s := sign x; x := abs x; p := bits(); inc 4
- if x > [6,0] then (inc p; x := 2*pi*fractionPart(x/pi/2); bits p)
- if x > [3,0] then (inc p; s := -s; x := x - pi; bits p)
- if x > [3,-1] then (inc p; x := pi - x; dec p)
+ if x > [6,0] then (inc p; x := 2*pi()*fractionPart(x/pi()/2); bits p)
+ if x > [3,0] then (inc p; s := -s; x := x - pi(); bits p)
+ if x > [3,-1] then (inc p; x := pi() - x; dec p)
-- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
-- by using the formula sin(3*x/3) = 3 sin(x/3) - 4 sin(x/3)**3
-- the running time is O( sqrt p M(p) ) assuming |x| < 1
@@ -359,11 +359,11 @@ Float():
cos x ==
s:I := 1; x := abs x; p := bits(); inc 4
- if x > [6,0] then (inc p; x := 2*pi*fractionPart(x/pi/2); dec p)
- if x > [3,0] then (inc p; s := -s; x := x-pi; dec p)
+ if x > [6,0] then (inc p; x := 2*pi()*fractionPart(x/pi()/2); dec p)
+ if x > [3,0] then (inc p; s := -s; x := x-pi(); dec p)
if x > [1,0] then
-- take care of the accuracy problem near pi/2
- inc p; x := pi/2-x; bits p; x := normalize x
+ inc p; x := pi()/2-x; bits p; x := normalize x
return (s * sin x)
-- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
-- by using the formula cos(2*x/2) = 2 cos(x/2)**2 - 1
@@ -467,7 +467,7 @@ Float():
p := bits(); inc 5
-- apply log(x) = n log 2 + log(x/2**n) so that 1/2 < x < 2
if (n := order x) < 0 then n := n+1
- l := if n = 0 then 0 else (x := shift(x,-n); n * log2)
+ l := if n = 0 then 0 else (x := shift(x,-n); n * log2())
-- speed the series convergence by finding m and k such that
-- | exp(m/2**k) x - 1 | < 1 / 2 ** O(sqrt p)
-- write log(exp(m/2**k) x) as m/2**k + log x
@@ -525,17 +525,17 @@ Float():
s := s + t quo k
t := t quo 81
-- We have log 10 = log 5 + log 2 and log 5/4 = log 5 - 2 log 2
- inc 2; L10 := [bits(),[s,-n] + 3*log2]; dec 2
+ inc 2; L10 := [bits(),[s,-n] + 3*log2()]; dec 2
normalize L10.value
- log2(x) == (inc 2; r := log(x)/log2; dec 2; normalize r)
- log10(x) == (inc 2; r := log(x)/log10; dec 2; normalize r)
+ log2(x) == (inc 2; r := log(x)/log2(); dec 2; normalize r)
+ log10(x) == (inc 2; r := log(x)/log10(); dec 2; normalize r)
exp(x) ==
-- exp(n+x) = exp(1)**n exp(x) for n such that |x| < 1
p := bits(); inc 5; e1:% := 1
if (n := wholePart x) ~= 0 then
- inc LENGTH n; e1 := exp1 ** n; dec LENGTH n
+ inc LENGTH n; e1 := exp1() ** n; dec LENGTH n
x := fractionPart x
if zero? x then (bits p; return normalize e1)
-- make |x| < O( 2**(-sqrt p) ) < 1/2 to speed series convergence
@@ -865,13 +865,13 @@ Float():
zero? exponent f =>
padFromRight concat(convert(mantissa f)@S, ".0")
negative? f => concat("-", fixed abs f)
- d := if OUTPREC() = -1 then digits::I else OUTPREC()
+ d := if OUTPREC() = -1 then digits()::I else OUTPREC()
-- g := convert10(abs f,digits); m := g.mantissa; e := g.exponent
g := convert10(abs f,d); m := g.mantissa; e := g.exponent
if OUTPREC() ~= -1 then
-- round g to OUTPREC digits after the decimal point
l := length10 m
- if -e > OUTPREC() and -e < 2*digits::I then
+ if -e > OUTPREC() and -e < 2*digits()::I then
g := normalize10(g,l+e+OUTPREC())
m := g.mantissa; e := g.exponent
s := convert(m)@S; n := #s; o := e+n
@@ -902,7 +902,7 @@ Float():
s := convert(mantissa f)@S
concat ["0.", padFromLeft s, t, convert(#s)@S]
-- base conversion to decimal rounded to the requested precision
- d := if OUTPREC() = -1 then digits::I else OUTPREC()
+ d := if OUTPREC() = -1 then digits()::I else OUTPREC()
g := convert10(f,d); m := g.mantissa; e := g.exponent
-- I'm assuming that length10 m = # s given n > 0
s := convert(m)@S; n := #s; o := e+n
@@ -912,7 +912,7 @@ Float():
general(f) ==
zero? f => "0.0"
negative? f => concat("-", general abs f)
- d := if OUTPREC() = -1 then digits::I else OUTPREC()
+ d := if OUTPREC() = -1 then digits()::I else OUTPREC()
zero? exponent f =>
d := d + 1
s := convert(mantissa f)@S
@@ -1020,7 +1020,7 @@ Float():
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
---Copyright (C) 2007-2009, Gabriel Dos Reis.
+--Copyright (C) 2007-2010, Gabriel Dos Reis.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without