diff options
author | dos-reis <gdr@axiomatics.org> | 2008-04-03 04:23:42 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2008-04-03 04:23:42 +0000 |
commit | 001e19b08ba7fb1b9e6f6bdb44a82ba3db3fc532 (patch) | |
tree | da9e2fe5d81ff4cd7709d12e44b8c3e348b8a8e3 /src/algebra/ffpoly.spad.pamphlet | |
parent | a7bab9a6c2070d05e2dbd256ce455079c8ced385 (diff) | |
download | open-axiom-001e19b08ba7fb1b9e6f6bdb44a82ba3db3fc532.tar.gz |
Replace `^=' with `~='.
Diffstat (limited to 'src/algebra/ffpoly.spad.pamphlet')
-rw-r--r-- | src/algebra/ffpoly.spad.pamphlet | 34 |
1 files changed, 17 insertions, 17 deletions
diff --git a/src/algebra/ffpoly.spad.pamphlet b/src/algebra/ffpoly.spad.pamphlet index eba95386..acebb710 100644 --- a/src/algebra/ffpoly.spad.pamphlet +++ b/src/algebra/ffpoly.spad.pamphlet @@ -240,7 +240,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where qexp.1:=h for i in 2..m1 repeat g:=0$SUP - while h ^= 0 repeat + while h ~= 0 repeat g:=g + leadingCoefficient(h) * qpow.degree(h) h:=reductum(h) qexp.i:=(h:=g) @@ -282,7 +282,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where -- -- determine the multiplicative order of q modulo n -- e : PI := 1 -- qe : PI := q --- while (qe rem n) ^= 1 repeat +-- while (qe rem n) ~= 1 repeat -- e := e + 1 -- qe := qe * q -- ((qe - 1) ** ((eulerPhi(n) quo e) pretend PI) ) pretend PI @@ -345,7 +345,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where -- determine the multiplicative order of q modulo d e : PI := 1 qe : PI := q - while (qe rem d) ^= 1 repeat + while (qe rem d) ~= 1 repeat e := e + 1 qe := qe * q prod := prod * _ @@ -361,7 +361,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where -- (cf. [LN] p.89, Th. 3.16, and p.87, following Th. 3.11) n : NNI := degree f n = 0 => false - leadingCoefficient f ^= 1 => false + leadingCoefficient f ~= 1 => false coefficient(f, 0) = 0 => false q : PI := sizeGF qn1: PI := (q**n - 1) :: NNI :: PI @@ -371,7 +371,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where -- may be improved by tabulating the residues x**(i*q) -- for i = 0,...,n-1 : -- - lift(x ** qn1)$MM ^= 1 => false -- X**(q**n - 1) rem f in GF[X] + lift(x ** qn1)$MM ~= 1 => false -- X**(q**n - 1) rem f in GF[X] lrec : L Record(factor:I, exponent:I) := factors(factor qn1) lfact : L PI := [] -- collect the prime factors for rec in lrec repeat -- of q**n - 1 @@ -387,7 +387,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where -- x, x**q, ... , x**(q**(n-1)) are linearly independent over GF n : NNI := degree f n = 0 => false - leadingCoefficient f ^= 1 => false + leadingCoefficient f ~= 1 => false coefficient(f, 0) = 0 => false n = 1 => true not irreducible? f => false @@ -428,7 +428,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where n : NNI := degree f n = 0 => error "polynomial must have positive degree" -- make f monic - if (lcf := leadingCoefficient f) ^= 1 then f := (inv lcf) * f + if (lcf := leadingCoefficient f) ~= 1 then f := (inv lcf) * f -- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero -- then fRepr := [[n,fn], ... , [i0,f{i0}]] fRepr : Repr := f pretend Repr @@ -438,7 +438,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where -- a new value to one of its records for term in fRepr repeat fcopy := cons(copy term, fcopy) - if term.expnt ^= 0 then + if term.expnt ~= 0 then fcopy := cons([0,0]$Rec, fcopy) tailpol : Repr := [] headpol : Repr := fcopy -- [[0,f0], ... , [n,fn]] where @@ -505,7 +505,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where n : NNI := degree f n = 0 => error "polynomial must have positive degree" -- make f monic - if (lcf := leadingCoefficient f) ^= 1 then f := (inv lcf) * f + if (lcf := leadingCoefficient f) ~= 1 then f := (inv lcf) * f -- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero -- then fRepr := [[n,fn], ... , [i0,f{i0}]] fRepr : Repr := f pretend Repr @@ -515,7 +515,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where -- a new value to one of its records for term in fRepr repeat fcopy := cons(copy term, fcopy) - if term.expnt ^= 0 then + if term.expnt ~= 0 then term := [0,0]$Rec fcopy := cons(term, fcopy) fcopy := reverse fcopy @@ -624,7 +624,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where n : NNI := degree f n = 0 => error "polynomial must have positive degree" -- make f monic - if (lcf := leadingCoefficient f) ^= 1 then f := (inv lcf) * f + if (lcf := leadingCoefficient f) ~= 1 then f := (inv lcf) * f -- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero -- then fRepr := [[n,fn], ... , [i0,f{i0}]] fRepr : Repr := f pretend Repr @@ -634,7 +634,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where -- a new value to one of its records for term in fRepr repeat fcopy := cons(copy term, fcopy) - if term.expnt ^= 0 then + if term.expnt ~= 0 then term := [0,0]$Rec fcopy := cons(term, fcopy) fcopy := reverse fcopy -- [[n,1], [r,fr], ... , [0,f0]] @@ -737,7 +737,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where n : NNI := degree f n = 0 => error "polynomial must have positive degree" -- make f monic - if (lcf := leadingCoefficient f) ^= 1 then f := (inv lcf) * f + if (lcf := leadingCoefficient f) ~= 1 then f := (inv lcf) * f -- if f = fn*X**n + ... + f{i0}*X**{i0} with the fi non-zero -- then fRepr := [[n,fn], ... , [i0,f{i0}]] fRepr : Repr := f pretend Repr @@ -747,7 +747,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where -- a new value to one of its records for term in fRepr repeat fcopy := cons(copy term, fcopy) - if term.expnt ^= 0 then + if term.expnt ~= 0 then term := [0,0]$Rec fcopy := cons(term, fcopy) fcopy := reverse fcopy -- [[n,1], [r,fr], ... , [0,f0]] @@ -958,7 +958,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where -- expt : NNI := #ragits -- for i in ragits repeat -- expt := (expt - 1) :: NNI --- if i ^= 0 then pol := pol + monomial(index(i::PI)$GF, expt) +-- if i ~= 0 then pol := pol + monomial(index(i::PI)$GF, expt) -- pol -- random == qAdicExpansion(random()$I) @@ -967,7 +967,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where -- pol := monomial(1,n)$SUP -- n1 : NNI := (n - 1) :: NNI -- for i in 0..n1 repeat --- if (c := random()$GF) ^= 0 then +-- if (c := random()$GF) ~= 0 then -- pol := pol + monomial(c, i)$SUP -- pol @@ -975,7 +975,7 @@ FiniteFieldPolynomialPackage GF : Exports == Implementation where polRepr : Repr := [] n1 : NNI := (n - 1) :: NNI for i in 0..n1 repeat - if (c := random()$GF) ^= 0 then + if (c := random()$GF) ~= 0 then polRepr := cons([i, c]$Rec, polRepr) cons([n, 1$GF]$Rec, polRepr) pretend SUP |