aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/ffcat.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/ffcat.spad.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/algebra/ffcat.spad.pamphlet')
-rw-r--r--src/algebra/ffcat.spad.pamphlet873
1 files changed, 873 insertions, 0 deletions
diff --git a/src/algebra/ffcat.spad.pamphlet b/src/algebra/ffcat.spad.pamphlet
new file mode 100644
index 00000000..9505c555
--- /dev/null
+++ b/src/algebra/ffcat.spad.pamphlet
@@ -0,0 +1,873 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra ffcat.spad}
+\author{Johannes Grabmeier, Alfred Scheerhorn, Barry Trager, James Davenport}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\begin{verbatim}
+-- 28.01.93: AS and JG:another Error in discreteLog(.,.) in FFIEDLC corrected.
+-- 08.05.92: AS Error in discreteLog(.,.) in FFIEDLC corrected.
+-- 03.04.92: AS Barry Trager added package FFSLPE and some functions to FFIELDC
+-- 25.02.92: AS added following functions in FAXF: impl.of mrepresents,
+-- linearAssociatedExp,linearAssociatedLog, linearAssociatedOrder
+-- 18.02.92: AS: more efficient version of degree added,
+-- first version of degree in FAXF set into comments
+-- 18.06.91: AS: general version of minimalPolynomial added
+-- 08.05.91: JG, AS implementation of missing functions in FFC and FAXF
+-- 04.05.91: JG: comments
+-- 04.04.91: JG: old version of charthRoot in FFC was dropped
+
+-- Fields with finite characteristic
+\end{verbatim}
+\section{category FPC FieldOfPrimeCharacteristic}
+<<category FPC FieldOfPrimeCharacteristic>>=
+)abbrev category FPC FieldOfPrimeCharacteristic
+++ Author: J. Grabmeier, A. Scheerhorn
+++ Date Created: 10 March 1991
+++ Date Last Updated: 31 March 1991
+++ Basic Operations: _+, _*
+++ Related Constructors:
+++ Also See:
+++ AMS Classifications:
+++ Keywords: field, finite field, prime characteristic
+++ References:
+++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
+++ AXIOM Technical Report Series, ATR/5 NP2522.
+++ Description:
+++ FieldOfPrimeCharacteristic is the category of fields of prime
+++ characteristic, e.g. finite fields, algebraic closures of
+++ fields of prime characteristic, transcendental extensions of
+++ of fields of prime characteristic.
+FieldOfPrimeCharacteristic:Category == _
+ Join(Field,CharacteristicNonZero) with
+ order: $ -> OnePointCompletion PositiveInteger
+ ++ order(a) computes the order of an element in the multiplicative
+ ++ group of the field.
+ ++ Error: if \spad{a} is 0.
+ discreteLog: ($,$) -> Union(NonNegativeInteger,"failed")
+ ++ discreteLog(b,a) computes s with \spad{b**s = a} if such an s exists.
+ primeFrobenius: $ -> $
+ ++ primeFrobenius(a) returns \spad{a ** p} where p is the characteristic.
+ primeFrobenius: ($,NonNegativeInteger) -> $
+ ++ primeFrobenius(a,s) returns \spad{a**(p**s)} where p
+ ++ is the characteristic.
+ add
+ primeFrobenius(a) == a ** characteristic()
+ primeFrobenius(a,s) == a ** (characteristic()**s)
+
+@
+\section{category XF ExtensionField}
+<<category XF ExtensionField>>=
+)abbrev category XF ExtensionField
+++ Author: J. Grabmeier, A. Scheerhorn
+++ Date Created: 10 March 1991
+++ Date Last Updated: 31 March 1991
+++ Basic Operations: _+, _*, extensionDegree, algebraic?, transcendent?
+++ Related Constructors:
+++ Also See:
+++ AMS Classifications:
+++ Keywords: field, extension field
+++ References:
+++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
+++ AXIOM Technical Report Series, ATR/5 NP2522.
+++ Description:
+++ ExtensionField {\em F} is the category of fields which extend
+++ the field F
+ExtensionField(F:Field) : Category == Join(Field,RetractableTo F,VectorSpace F) with
+ if F has CharacteristicZero then CharacteristicZero
+ if F has CharacteristicNonZero then FieldOfPrimeCharacteristic
+ algebraic? : $ -> Boolean
+ ++ algebraic?(a) tests whether an element \spad{a} is algebraic with
+ ++ respect to the ground field F.
+ transcendent? : $ -> Boolean
+ ++ transcendent?(a) tests whether an element \spad{a} is transcendent
+ ++ with respect to the ground field F.
+ inGroundField?: $ -> Boolean
+ ++ inGroundField?(a) tests whether an element \spad{a}
+ ++ is already in the ground field F.
+ degree : $ -> OnePointCompletion PositiveInteger
+ ++ degree(a) returns the degree of minimal polynomial of an element
+ ++ \spad{a} if \spad{a} is algebraic
+ ++ with respect to the ground field F, and \spad{infinity} otherwise.
+ extensionDegree : () -> OnePointCompletion PositiveInteger
+ ++ extensionDegree() returns the degree of the field extension if the
+ ++ extension is algebraic, and \spad{infinity} if it is not.
+ transcendenceDegree : () -> NonNegativeInteger
+ ++ transcendenceDegree() returns the transcendence degree of the
+ ++ field extension, 0 if the extension is algebraic.
+ -- perhaps more absolute degree functions
+ if F has Finite then
+ FieldOfPrimeCharacteristic
+ Frobenius: $ -> $
+ ++ Frobenius(a) returns \spad{a ** q} where q is the \spad{size()$F}.
+ Frobenius: ($,NonNegativeInteger) -> $
+ ++ Frobenius(a,s) returns \spad{a**(q**s)} where q is the size()$F.
+ add
+ algebraic?(a) == not infinite? (degree(a)@OnePointCompletion_
+ (PositiveInteger))$OnePointCompletion(PositiveInteger)
+ transcendent? a == infinite?(degree(a)@OnePointCompletion _
+ (PositiveInteger))$OnePointCompletion(PositiveInteger)
+ if F has Finite then
+ Frobenius(a) == a ** size()$F
+ Frobenius(a,s) == a ** (size()$F ** s)
+
+@
+\section{category FAXF FiniteAlgebraicExtensionField}
+<<category FAXF FiniteAlgebraicExtensionField>>=
+)abbrev category FAXF FiniteAlgebraicExtensionField
+++ Author: J. Grabmeier, A. Scheerhorn
+++ Date Created: 11 March 1991
+++ Date Last Updated: 31 March 1991
+++ Basic Operations: _+, _*, extensionDegree,
+++ Related Constructors:
+++ Also See:
+++ AMS Classifications:
+++ Keywords: field, extension field, algebraic extension, finite extension
+++ References:
+++ R.Lidl, H.Niederreiter: Finite Field, Encycoldia of Mathematics and
+++ Its Applications, Vol. 20, Cambridge Univ. Press, 1983, ISBN 0 521 30240 4
+++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
+++ AXIOM Technical Report Series, ATR/5 NP2522.
+++ Description:
+++ FiniteAlgebraicExtensionField {\em F} is the category of fields
+++ which are finite algebraic extensions of the field {\em F}.
+++ If {\em F} is finite then any finite algebraic extension of {\em F} is finite, too.
+++ Let {\em K} be a finite algebraic extension of the finite field {\em F}.
+++ The exponentiation of elements of {\em K} defines a Z-module structure
+++ on the multiplicative group of {\em K}. The additive group of {\em K}
+++ becomes a module over the ring of polynomials over {\em F} via the operation
+++ \spadfun{linearAssociatedExp}(a:K,f:SparseUnivariatePolynomial F)
+++ which is linear over {\em F}, i.e. for elements {\em a} from {\em K},
+++ {\em c,d} from {\em F} and {\em f,g} univariate polynomials over {\em F}
+++ we have \spadfun{linearAssociatedExp}(a,cf+dg) equals {\em c} times
+++ \spadfun{linearAssociatedExp}(a,f) plus {\em d} times
+++ \spadfun{linearAssociatedExp}(a,g).
+++ Therefore \spadfun{linearAssociatedExp} is defined completely by
+++ its action on monomials from {\em F[X]}:
+++ \spadfun{linearAssociatedExp}(a,monomial(1,k)\$SUP(F)) is defined to be
+++ \spadfun{Frobenius}(a,k) which is {\em a**(q**k)} where {\em q=size()\$F}.
+++ The operations order and discreteLog associated with the multiplicative
+++ exponentiation have additive analogues associated to the operation
+++ \spadfun{linearAssociatedExp}. These are the functions
+++ \spadfun{linearAssociatedOrder} and \spadfun{linearAssociatedLog},
+++ respectively.
+
+FiniteAlgebraicExtensionField(F : Field) : Category == _
+ Join(ExtensionField F, RetractableTo F) with
+ -- should be unified with algebras
+ -- Join(ExtensionField F, FramedAlgebra F, RetractableTo F) with
+ basis : () -> Vector $
+ ++ basis() returns a fixed basis of \$ as \spad{F}-vectorspace.
+ basis : PositiveInteger -> Vector $
+ ++ basis(n) returns a fixed basis of a subfield of \$ as
+ ++ \spad{F}-vectorspace.
+ coordinates : $ -> Vector F
+ ++ coordinates(a) returns the coordinates of \spad{a} with respect
+ ++ to the fixed \spad{F}-vectorspace basis.
+ coordinates : Vector $ -> Matrix F
+ ++ coordinates([v1,...,vm]) returns the coordinates of the
+ ++ vi's with to the fixed basis. The coordinates of vi are
+ ++ contained in the ith row of the matrix returned by this
+ ++ function.
+ represents: Vector F -> $
+ ++ represents([a1,..,an]) returns \spad{a1*v1 + ... + an*vn}, where
+ ++ v1,...,vn are the elements of the fixed basis.
+ minimalPolynomial: $ -> SparseUnivariatePolynomial F
+ ++ minimalPolynomial(a) returns the minimal polynomial of an
+ ++ element \spad{a} over the ground field F.
+ definingPolynomial: () -> SparseUnivariatePolynomial F
+ ++ definingPolynomial() returns the polynomial used to define
+ ++ the field extension.
+ extensionDegree : () -> PositiveInteger
+ ++ extensionDegree() returns the degree of field extension.
+ degree : $ -> PositiveInteger
+ ++ degree(a) returns the degree of the minimal polynomial of an
+ ++ element \spad{a} over the ground field F.
+ norm: $ -> F
+ ++ norm(a) computes the norm of \spad{a} with respect to the
+ ++ field considered as an algebra with 1 over the ground field F.
+ trace: $ -> F
+ ++ trace(a) computes the trace of \spad{a} with respect to
+ ++ the field considered as an algebra with 1 over the ground field F.
+ if F has Finite then
+ FiniteFieldCategory
+ minimalPolynomial: ($,PositiveInteger) -> SparseUnivariatePolynomial $
+ ++ minimalPolynomial(x,n) computes the minimal polynomial of x over
+ ++ the field of extension degree n over the ground field F.
+ norm: ($,PositiveInteger) -> $
+ ++ norm(a,d) computes the norm of \spad{a} with respect to the field of
+ ++ extension degree d over the ground field of size.
+ ++ Error: if d does not divide the extension degree of \spad{a}.
+ ++ Note: norm(a,d) = reduce(*,[a**(q**(d*i)) for i in 0..n/d])
+ trace: ($,PositiveInteger) -> $
+ ++ trace(a,d) computes the trace of \spad{a} with respect to the
+ ++ field of extension degree d over the ground field of size q.
+ ++ Error: if d does not divide the extension degree of \spad{a}.
+ ++ Note: \spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.
+ createNormalElement: () -> $
+ ++ createNormalElement() computes a normal element over the ground
+ ++ field F, that is,
+ ++ \spad{a**(q**i), 0 <= i < extensionDegree()} is an F-basis,
+ ++ where \spad{q = size()\$F}.
+ ++ Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.
+ normalElement: () -> $
+ ++ normalElement() returns a element, normal over the ground field F,
+ ++ i.e. \spad{a**(q**i), 0 <= i < extensionDegree()} is an F-basis,
+ ++ where \spad{q = size()\$F}.
+ ++ At the first call, the element is computed by
+ ++ \spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField}
+ ++ then cached in a global variable.
+ ++ On subsequent calls, the element is retrieved by referencing the
+ ++ global variable.
+ normal?: $ -> Boolean
+ ++ normal?(a) tests whether the element \spad{a} is normal over the
+ ++ ground field F, i.e.
+ ++ \spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an F-basis,
+ ++ where \spad{q = size()\$F}.
+ ++ Implementation according to Lidl/Niederreiter: Theorem 2.39.
+ generator: () -> $
+ ++ generator() returns a root of the defining polynomial.
+ ++ This element generates the field as an algebra over the ground field.
+ linearAssociatedExp:($,SparseUnivariatePolynomial F) -> $
+ ++ linearAssociatedExp(a,f) is linear over {\em F}, i.e.
+ ++ for elements {\em a} from {\em \$}, {\em c,d} form {\em F} and
+ ++ {\em f,g} univariate polynomials over {\em F} we have
+ ++ \spadfun{linearAssociatedExp}(a,cf+dg) equals {\em c} times
+ ++ \spadfun{linearAssociatedExp}(a,f) plus {\em d} times
+ ++ \spadfun{linearAssociatedExp}(a,g). Therefore
+ ++ \spadfun{linearAssociatedExp} is defined completely by its action on
+ ++ monomials from {\em F[X]}:
+ ++ \spadfun{linearAssociatedExp}(a,monomial(1,k)\$SUP(F)) is defined to
+ ++ be \spadfun{Frobenius}(a,k) which is {\em a**(q**k)},
+ ++ where {\em q=size()\$F}.
+ linearAssociatedOrder: $ -> SparseUnivariatePolynomial F
+ ++ linearAssociatedOrder(a) retruns the monic polynomial {\em g} of
+ ++ least degree, such that \spadfun{linearAssociatedExp}(a,g) is 0.
+ linearAssociatedLog: $ -> SparseUnivariatePolynomial F
+ ++ linearAssociatedLog(a) returns a polynomial {\em g}, such that
+ ++ \spadfun{linearAssociatedExp}(normalElement(),g) equals {\em a}.
+ linearAssociatedLog: ($,$) -> Union(SparseUnivariatePolynomial F,"failed")
+ ++ linearAssociatedLog(b,a) returns a polynomial {\em g}, such that the
+ ++ \spadfun{linearAssociatedExp}(b,g) equals {\em a}.
+ ++ If there is no such polynomial {\em g}, then
+ ++ \spadfun{linearAssociatedLog} fails.
+ add
+ I ==> Integer
+ PI ==> PositiveInteger
+ NNI ==> NonNegativeInteger
+ SUP ==> SparseUnivariatePolynomial
+ DLP ==> DiscreteLogarithmPackage
+
+ represents(v) ==
+ a:$:=0
+ b:=basis()
+ for i in 1..extensionDegree()@PI repeat
+ a:=a+(v.i)*(b.i)
+ a
+ transcendenceDegree() == 0$NNI
+ dimension() == (#basis()) ::NonNegativeInteger::CardinalNumber
+ extensionDegree():OnePointCompletion(PositiveInteger) ==
+ (#basis()) :: PositiveInteger::OnePointCompletion(PositiveInteger)
+ degree(a):OnePointCompletion(PositiveInteger) ==
+ degree(a)@PI::OnePointCompletion(PositiveInteger)
+
+ coordinates(v:Vector $) ==
+ m := new(#v, extensionDegree(), 0)$Matrix(F)
+ for i in minIndex v .. maxIndex v for j in minRowIndex m .. repeat
+ setRow_!(m, j, coordinates qelt(v, i))
+ m
+ algebraic? a == true
+ transcendent? a == false
+ extensionDegree() == (#basis()) :: PositiveInteger
+ -- degree a == degree(minimalPolynomial a)$SUP(F) :: PI
+ trace a ==
+ b := basis()
+ abs : F := 0
+ for i in 1..#b repeat
+ abs := abs + coordinates(a*b.i).i
+ abs
+ norm a ==
+ b := basis()
+ m := new(#b,#b, 0)$Matrix(F)
+ for i in 1..#b repeat
+ setRow_!(m,i, coordinates(a*b.i))
+ determinant(m)
+ if F has Finite then
+ linearAssociatedExp(x,f) ==
+ erg:$:=0
+ y:=x
+ for i in 0..degree(f) repeat
+ erg:=erg + coefficient(f,i) * y
+ y:=Frobenius(y)
+ erg
+ linearAssociatedLog(b,x) ==
+ x=0 => 0
+ l:List List F:=[entries coordinates b]
+ a:$:=b
+ extdeg:NNI:=extensionDegree()@PI
+ for i in 2..extdeg repeat
+ a:=Frobenius(a)
+ l:=concat(l,entries coordinates a)$(List List F)
+ l:=concat(l,entries coordinates x)$(List List F)
+ m1:=rowEchelon transpose matrix(l)$(Matrix F)
+ v:=zero(extdeg)$(Vector F)
+ rown:I:=1
+ for i in 1..extdeg repeat
+ if qelt(m1,rown,i) = 1$F then
+ v.i:=qelt(m1,rown,extdeg+1)
+ rown:=rown+1
+ p:=+/[monomial(v.(i+1),i::NNI) for i in 0..(#v-1)]
+ p=0 =>
+ messagePrint("linearAssociatedLog: second argument not in_
+ group generated by first argument")$OutputForm
+ "failed"
+ p
+ linearAssociatedLog(x) == linearAssociatedLog(normalElement(),x) ::
+ SparseUnivariatePolynomial(F)
+ linearAssociatedOrder(x) ==
+ x=0 => 0
+ l:List List F:=[entries coordinates x]
+ a:$:=x
+ for i in 1..extensionDegree()@PI repeat
+ a:=Frobenius(a)
+ l:=concat(l,entries coordinates a)$(List List F)
+ v:=first nullSpace transpose matrix(l)$(Matrix F)
+ +/[monomial(v.(i+1),i::NNI) for i in 0..(#v-1)]
+
+ charthRoot(x):Union($,"failed") ==
+ (charthRoot(x)@$)::Union($,"failed")
+ -- norm(e) == norm(e,1) pretend F
+ -- trace(e) == trace(e,1) pretend F
+ minimalPolynomial(a,n) ==
+ extensionDegree()@PI rem n ^= 0 =>
+ error "minimalPolynomial: 2. argument must divide extension degree"
+ f:SUP $:=monomial(1,1)$(SUP $) - monomial(a,0)$(SUP $)
+ u:$:=Frobenius(a,n)
+ while not(u = a) repeat
+ f:=f * (monomial(1,1)$(SUP $) - monomial(u,0)$(SUP $))
+ u:=Frobenius(u,n)
+ f
+ norm(e,s) ==
+ qr := divide(extensionDegree(), s)
+ zero?(qr.remainder) =>
+ pow := (size()-1) quo (size()$F ** s - 1)
+ e ** (pow::NonNegativeInteger)
+ error "norm: second argument must divide degree of extension"
+ trace(e,s) ==
+ qr:=divide(extensionDegree(),s)
+ q:=size()$F
+ zero?(qr.remainder) =>
+ a:$:=0
+ for i in 0..qr.quotient-1 repeat
+ a:=a + e**(q**(s*i))
+ a
+ error "trace: second argument must divide degree of extension"
+ size() == size()$F ** extensionDegree()
+ createNormalElement() ==
+ characteristic() = size() => 1
+ res : $
+ for i in 1.. repeat
+ res := index(i :: PI)
+ not inGroundField? res =>
+ normal? res => return res
+ -- theorem: there exists a normal element, this theorem is
+ -- unknown to the compiler
+ res
+ normal?(x:$) ==
+ p:SUP $:=(monomial(1,extensionDegree()) - monomial(1,0))@(SUP $)
+ f:SUP $:= +/[monomial(Frobenius(x,i),i)$(SUP $) _
+ for i in 0..extensionDegree()-1]
+ gcd(p,f) = 1 => true
+ false
+ degree a ==
+ y:$:=Frobenius a
+ deg:PI:=1
+ while y^=a repeat
+ y := Frobenius(y)
+ deg:=deg+1
+ deg
+
+@
+\section{package DLP DiscreteLogarithmPackage}
+<<package DLP DiscreteLogarithmPackage>>=
+)abbrev package DLP DiscreteLogarithmPackage
+++ Author: J. Grabmeier, A. Scheerhorn
+++ Date Created: 12 March 1991
+++ Date Last Updated: 31 March 1991
+++ Basic Operations:
+++ Related Constructors:
+++ Also See:
+++ AMS Classifications:
+++ Keywords: discrete logarithm
+++ References:
+++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
+++ AXIOM Technical Report Series, ATR/5 NP2522.
+++ Description:
+++ DiscreteLogarithmPackage implements help functions for discrete logarithms
+++ in monoids using small cyclic groups.
+
+DiscreteLogarithmPackage(M): public == private where
+ M : Join(Monoid,Finite) with
+ "**": (M,Integer) -> M
+ ++ x ** n returns x raised to the integer power n
+ public ==> with
+ shanksDiscLogAlgorithm:(M,M,NonNegativeInteger)-> _
+ Union(NonNegativeInteger,"failed")
+ ++ shanksDiscLogAlgorithm(b,a,p) computes s with \spad{b**s = a} for
+ ++ assuming that \spad{a} and b are elements in a 'small' cyclic group of
+ ++ order p by Shank's algorithm.
+ ++ Note: this is a subroutine of the function \spadfun{discreteLog}.
+ I ==> Integer
+ PI ==> PositiveInteger
+ NNI ==> NonNegativeInteger
+ SUP ==> SparseUnivariatePolynomial
+ DLP ==> DiscreteLogarithmPackage
+
+ private ==> add
+ shanksDiscLogAlgorithm(logbase,c,p) ==
+ limit:Integer:= 30
+ -- for logarithms up to cyclic groups of order limit a full
+ -- logarithm table is computed
+ p < limit =>
+ a:M:=1
+ disclog:Integer:=0
+ found:Boolean:=false
+ for i in 0..p-1 while not found repeat
+ a = c =>
+ disclog:=i
+ found:=true
+ a:=a*logbase
+ not found =>
+ messagePrint("discreteLog: second argument not in cyclic group_
+ generated by first argument")$OutputForm
+ "failed"
+ disclog pretend NonNegativeInteger
+ l:Integer:=length(p)$Integer
+ if odd?(l)$Integer then n:Integer:= shift(p,-(l quo 2))
+ else n:Integer:= shift(1,(l quo 2))
+ a:M:=1
+ exptable : Table(PI,NNI) :=table()$Table(PI,NNI)
+ for i in (0::NNI)..(n-1)::NNI repeat
+ insert_!([lookup(a),i::NNI]$Record(key:PI,entry:NNI),_
+ exptable)$Table(PI,NNI)
+ a:=a*logbase
+ found := false
+ end := (p-1) quo n
+ disclog:Integer:=0
+ a := c
+ b := logbase ** (-n)
+ for i in 0..end while not found repeat
+ rho:= search(lookup(a),exptable)_
+ $Table(PositiveInteger,NNI)
+ rho case NNI =>
+ found := true
+ disclog:= n * i + rho pretend Integer
+ a := a * b
+ not found =>
+ messagePrint("discreteLog: second argument not in cyclic group_
+ generated by first argument")$OutputForm
+ "failed"
+ disclog pretend NonNegativeInteger
+
+@
+\section{category FFIELDC FiniteFieldCategory}
+<<category FFIELDC FiniteFieldCategory>>=
+)abbrev category FFIELDC FiniteFieldCategory
+++ Author: J. Grabmeier, A. Scheerhorn
+++ Date Created: 11 March 1991
+++ Date Last Updated: 31 March 1991
+++ Basic Operations: _+, _*, extensionDegree, order, primitiveElement
+++ Related Constructors:
+++ Also See:
+++ AMS Classifications:
+++ Keywords: field, extension field, algebraic extension, finite field
+++ Galois field
+++ References:
+++ D.Lipson, Elements of Algebra and Algebraic Computing, The
+++ Benjamin/Cummings Publishing Company, Inc.-Menlo Park, California, 1981.
+++ J. Grabmeier, A. Scheerhorn: Finite Fields in AXIOM.
+++ AXIOM Technical Report Series, ATR/5 NP2522.
+++ Description:
+++ FiniteFieldCategory is the category of finite fields
+
+FiniteFieldCategory() : Category ==_
+ Join(FieldOfPrimeCharacteristic,Finite,StepThrough,DifferentialRing) with
+-- ,PolynomialFactorizationExplicit) with
+ charthRoot: $ -> $
+ ++ charthRoot(a) takes the characteristic'th root of {\em a}.
+ ++ Note: such a root is alway defined in finite fields.
+ conditionP: Matrix $ -> Union(Vector $,"failed")
+ ++ conditionP(mat), given a matrix representing a homogeneous system
+ ++ of equations, returns a vector whose characteristic'th powers
+ ++ is a non-trivial solution, or "failed" if no such vector exists.
+ -- the reason for implementing the following function is that we
+ -- can implement the functions order, getGenerator and primitive? on
+ -- category level without computing the, may be time intensive,
+ -- factorization of size()-1 at every function call again.
+ factorsOfCyclicGroupSize:_
+ () -> List Record(factor:Integer,exponent:Integer)
+ ++ factorsOfCyclicGroupSize() returns the factorization of size()-1
+ -- the reason for implementing the function tableForDiscreteLogarithm
+ -- is that we can implement the functions discreteLog and
+ -- shanksDiscLogAlgorithm on category level
+ -- computing the necessary exponentiation tables in the respective
+ -- domains once and for all
+ -- absoluteDegree : $ -> PositiveInteger
+ -- ++ degree of minimal polynomial, if algebraic with respect
+ -- ++ to the prime subfield
+ tableForDiscreteLogarithm: Integer -> _
+ Table(PositiveInteger,NonNegativeInteger)
+ ++ tableForDiscreteLogarithm(a,n) returns a table of the discrete
+ ++ logarithms of \spad{a**0} up to \spad{a**(n-1)} which, called with
+ ++ key \spad{lookup(a**i)} returns i for i in \spad{0..n-1}.
+ ++ Error: if not called for prime divisors of order of
+ ++ multiplicative group.
+ createPrimitiveElement: () -> $
+ ++ createPrimitiveElement() computes a generator of the (cyclic)
+ ++ multiplicative group of the field.
+ -- RDJ: Are these next lines to be included?
+ -- we run through the field and test, algorithms which construct
+ -- elements of larger order were found to be too slow
+ primitiveElement: () -> $
+ ++ primitiveElement() returns a primitive element stored in a global
+ ++ variable in the domain.
+ ++ At first call, the primitive element is computed
+ ++ by calling \spadfun{createPrimitiveElement}.
+ primitive?: $ -> Boolean
+ ++ primitive?(b) tests whether the element b is a generator of the
+ ++ (cyclic) multiplicative group of the field, i.e. is a primitive
+ ++ element.
+ ++ Implementation Note: see ch.IX.1.3, th.2 in D. Lipson.
+ discreteLog: $ -> NonNegativeInteger
+ ++ discreteLog(a) computes the discrete logarithm of \spad{a}
+ ++ with respect to \spad{primitiveElement()} of the field.
+ order: $ -> PositiveInteger
+ ++ order(b) computes the order of an element b in the multiplicative
+ ++ group of the field.
+ ++ Error: if b equals 0.
+ representationType: () -> Union("prime","polynomial","normal","cyclic")
+ ++ representationType() returns the type of the representation, one of:
+ ++ \spad{prime}, \spad{polynomial}, \spad{normal}, or \spad{cyclic}.
+ add
+ I ==> Integer
+ PI ==> PositiveInteger
+ NNI ==> NonNegativeInteger
+ SUP ==> SparseUnivariatePolynomial
+ DLP ==> DiscreteLogarithmPackage
+
+ -- exported functions
+
+ differentiate x == 0
+ init() == 0
+ nextItem(a) ==
+ zero?(a:=index(lookup(a)+1)) => "failed"
+ a
+ order(e):OnePointCompletion(PositiveInteger) ==
+ (order(e)@PI)::OnePointCompletion(PositiveInteger)
+
+ conditionP(mat:Matrix $) ==
+ l:=nullSpace mat
+ empty? l or every?(zero?, first l) => "failed"
+ map(charthRoot,first l)
+ charthRoot(x:$):$ == x**(size() quo characteristic())
+ charthRoot(x:%):Union($,"failed") ==
+ (charthRoot(x)@$)::Union($,"failed")
+ createPrimitiveElement() ==
+ sm1 : PositiveInteger := (size()$$-1) pretend PositiveInteger
+ start : Integer :=
+ -- in the polynomial case, index from 1 to characteristic-1
+ -- gives prime field elements
+ representationType = "polynomial" => characteristic()::Integer
+ 1
+ found : Boolean := false
+ for i in start.. while not found repeat
+ e : $ := index(i::PositiveInteger)
+ found := (order(e) = sm1)
+ e
+ primitive? a ==
+ -- add special implementation for prime field case
+ zero?(a) => false
+ explist := factorsOfCyclicGroupSize()
+ q:=(size()-1)@Integer
+ equalone : Boolean := false
+ for exp in explist while not equalone repeat
+-- equalone := one?(a**(q quo exp.factor))
+ equalone := ((a**(q quo exp.factor)) = 1)
+ not equalone
+ order e ==
+ e = 0 => error "order(0) is not defined "
+ ord:Integer:= size()-1 -- order e divides ord
+ a:Integer:= 0
+ lof:=factorsOfCyclicGroupSize()
+ for rec in lof repeat -- run through prime divisors
+ a := ord quo (primeDivisor := rec.factor)
+-- goon := one?(e**a)
+ goon := ((e**a) = 1)
+ -- run through exponents of the prime divisors
+ for j in 0..(rec.exponent)-2 while goon repeat
+ -- as long as we get (e**ord = 1) we
+ -- continue dividing by primeDivisor
+ ord := a
+ a := ord quo primeDivisor
+-- goon := one?(e**a)
+ goon := ((e**a) = 1)
+ if goon then ord := a
+ -- as we do a top down search we have found the
+ -- correct exponent of primeDivisor in order e
+ -- and continue with next prime divisor
+ ord pretend PositiveInteger
+ discreteLog(b) ==
+ zero?(b) => error "discreteLog: logarithm of zero"
+ faclist:=factorsOfCyclicGroupSize()
+ a:=b
+ gen:=primitiveElement()
+ -- in GF(2) its necessary to have discreteLog(1) = 1
+ b = gen => 1
+ disclog:Integer:=0
+ mult:Integer:=1
+ groupord := (size() - 1)@Integer
+ exp:Integer:=groupord
+ for f in faclist repeat
+ fac:=f.factor
+ for t in 0..f.exponent-1 repeat
+ exp:=exp quo fac
+ -- shanks discrete logarithm algorithm
+ exptable:=tableForDiscreteLogarithm(fac)
+ n:=#exptable
+ c:=a**exp
+ end:=(fac - 1) quo n
+ found:=false
+ disc1:Integer:=0
+ for i in 0..end while not found repeat
+ rho:= search(lookup(c),exptable)_
+ $Table(PositiveInteger,NNI)
+ rho case NNI =>
+ found := true
+ disc1:=((n * i + rho)@Integer) * mult
+ c:=c* gen**((groupord quo fac) * (-n))
+ not found => error "discreteLog: ?? discrete logarithm"
+ -- end of shanks discrete logarithm algorithm
+ mult := mult * fac
+ disclog:=disclog+disc1
+ a:=a * (gen ** (-disc1))
+ disclog pretend NonNegativeInteger
+
+ discreteLog(logbase,b) ==
+ zero?(b) =>
+ messagePrint("discreteLog: logarithm of zero")$OutputForm
+ "failed"
+ zero?(logbase) =>
+ messagePrint("discreteLog: logarithm to base zero")$OutputForm
+ "failed"
+ b = logbase => 1
+ not zero?((groupord:=order(logbase)@PI) rem order(b)@PI) =>
+ messagePrint("discreteLog: second argument not in cyclic group _
+generated by first argument")$OutputForm
+ "failed"
+ faclist:=factors factor groupord
+ a:=b
+ disclog:Integer:=0
+ mult:Integer:=1
+ exp:Integer:= groupord
+ for f in faclist repeat
+ fac:=f.factor
+ primroot:= logbase ** (groupord quo fac)
+ for t in 0..f.exponent-1 repeat
+ exp:=exp quo fac
+ rhoHelp:= shanksDiscLogAlgorithm(primroot,_
+ a**exp,fac pretend NonNegativeInteger)$DLP($)
+ rhoHelp case "failed" => return "failed"
+ rho := (rhoHelp :: NNI) * mult
+ disclog := disclog + rho
+ mult := mult * fac
+ a:=a * (logbase ** (-rho))
+ disclog pretend NonNegativeInteger
+
+ FP ==> SparseUnivariatePolynomial($)
+ FRP ==> Factored FP
+ f,g:FP
+ squareFreePolynomial(f:FP):FRP ==
+ squareFree(f)$UnivariatePolynomialSquareFree($,FP)
+ factorPolynomial(f:FP):FRP == factor(f)$DistinctDegreeFactorize($,FP)
+ factorSquareFreePolynomial(f:FP):FRP ==
+ f = 0 => 0
+ flist := distdfact(f,true)$DistinctDegreeFactorize($,FP)
+ (flist.cont :: FP) *
+ (*/[primeFactor(u.irr,u.pow) for u in flist.factors])
+ gcdPolynomial(f:FP,g:FP):FP ==
+ gcd(f,g)$EuclideanDomain_&(FP)
+
+@
+\section{FFIELDC.lsp BOOTSTRAP}
+{\bf FFIELDC} depends on a chain of files. We need to break this cycle to build
+the algebra. So we keep a cached copy of the translated {\bf FFIELDC}
+category which we can write into the {\bf MID} directory. We compile
+the lisp code and copy the {\bf FFIELDC.o} file to the {\bf OUT} directory.
+This is eventually forcibly replaced by a recompiled version.
+
+Note that this code is not included in the generated catdef.spad file.
+
+<<FFIELDC.lsp BOOTSTRAP>>=
+
+(|/VERSIONCHECK| 2)
+
+(SETQ |FiniteFieldCategory;AL| (QUOTE NIL))
+
+(DEFUN |FiniteFieldCategory| NIL (LET (#:G83129) (COND (|FiniteFieldCategory;AL|) (T (SETQ |FiniteFieldCategory;AL| (|FiniteFieldCategory;|))))))
+
+(DEFUN |FiniteFieldCategory;| NIL (PROG (#1=#:G83127) (RETURN (PROG1 (LETT #1# (|Join| (|FieldOfPrimeCharacteristic|) (|Finite|) (|StepThrough|) (|DifferentialRing|) (|mkCategory| (QUOTE |domain|) (QUOTE (((|charthRoot| (|$| |$|)) T) ((|conditionP| ((|Union| (|Vector| |$|) "failed") (|Matrix| |$|))) T) ((|factorsOfCyclicGroupSize| ((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|)))))) T) ((|tableForDiscreteLogarithm| ((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|))) T) ((|createPrimitiveElement| (|$|)) T) ((|primitiveElement| (|$|)) T) ((|primitive?| ((|Boolean|) |$|)) T) ((|discreteLog| ((|NonNegativeInteger|) |$|)) T) ((|order| ((|PositiveInteger|) |$|)) T) ((|representationType| ((|Union| "prime" "polynomial" "normal" "cyclic"))) T))) NIL (QUOTE ((|PositiveInteger|) (|NonNegativeInteger|) (|Boolean|) (|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|) (|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|)))) (|Matrix| |$|))) NIL)) |FiniteFieldCategory|) (SETELT #1# 0 (QUOTE (|FiniteFieldCategory|)))))))
+
+(MAKEPROP (QUOTE |FiniteFieldCategory|) (QUOTE NILADIC) T)
+@
+\section{FFIELDC-.lsp BOOTSTRAP}
+{\bf FFIELDC-} depends on {\bf FFIELDC}. We need to break this cycle to build
+the algebra. So we keep a cached copy of the translated {\bf FFIELDC-}
+category which we can write into the {\bf MID} directory. We compile
+the lisp code and copy the {\bf FFIELDC-.o} file to the {\bf OUT} directory.
+This is eventually forcibly replaced by a recompiled version.
+
+Note that this code is not included in the generated catdef.spad file.
+
+<<FFIELDC-.lsp BOOTSTRAP>>=
+
+(|/VERSIONCHECK| 2)
+
+(DEFUN |FFIELDC-;differentiate;2S;1| (|x| |$|) (|spadConstant| |$| 7))
+
+(DEFUN |FFIELDC-;init;S;2| (|$|) (|spadConstant| |$| 7))
+
+(DEFUN |FFIELDC-;nextItem;SU;3| (|a| |$|) (COND ((SPADCALL (LETT |a| (SPADCALL (|+| (SPADCALL |a| (QREFELT |$| 11)) 1) (QREFELT |$| 12)) |FFIELDC-;nextItem;SU;3|) (QREFELT |$| 14)) (CONS 1 "failed")) ((QUOTE T) (CONS 0 |a|))))
+
+(DEFUN |FFIELDC-;order;SOpc;4| (|e| |$|) (SPADCALL (SPADCALL |e| (QREFELT |$| 17)) (QREFELT |$| 20)))
+
+(DEFUN |FFIELDC-;conditionP;MU;5| (|mat| |$|) (PROG (|l|) (RETURN (SEQ (LETT |l| (SPADCALL |mat| (QREFELT |$| 24)) |FFIELDC-;conditionP;MU;5|) (COND ((OR (NULL |l|) (SPADCALL (ELT |$| 14) (|SPADfirst| |l|) (QREFELT |$| 27))) (EXIT (CONS 1 "failed")))) (EXIT (CONS 0 (SPADCALL (ELT |$| 28) (|SPADfirst| |l|) (QREFELT |$| 30))))))))
+
+(DEFUN |FFIELDC-;charthRoot;2S;6| (|x| |$|) (SPADCALL |x| (QUOTIENT2 (SPADCALL (QREFELT |$| 35)) (SPADCALL (QREFELT |$| 36))) (QREFELT |$| 37)))
+
+(DEFUN |FFIELDC-;charthRoot;SU;7| (|x| |$|) (CONS 0 (SPADCALL |x| (QREFELT |$| 28))))
+
+(DEFUN |FFIELDC-;createPrimitiveElement;S;8| (|$|) (PROG (|sm1| |start| |i| #1=#:G83175 |e| |found|) (RETURN (SEQ (LETT |sm1| (|-| (SPADCALL (QREFELT |$| 35)) 1) |FFIELDC-;createPrimitiveElement;S;8|) (LETT |start| (COND ((SPADCALL (SPADCALL (QREFELT |$| 42)) (CONS 1 "polynomial") (QREFELT |$| 43)) (SPADCALL (QREFELT |$| 36))) ((QUOTE T) 1)) |FFIELDC-;createPrimitiveElement;S;8|) (LETT |found| (QUOTE NIL) |FFIELDC-;createPrimitiveElement;S;8|) (SEQ (LETT |i| |start| |FFIELDC-;createPrimitiveElement;S;8|) G190 (COND ((NULL (COND (|found| (QUOTE NIL)) ((QUOTE T) (QUOTE T)))) (GO G191))) (SEQ (LETT |e| (SPADCALL (PROG1 (LETT #1# |i| |FFIELDC-;createPrimitiveElement;S;8|) (|check-subtype| (|>| #1# 0) (QUOTE (|PositiveInteger|)) #1#)) (QREFELT |$| 12)) |FFIELDC-;createPrimitiveElement;S;8|) (EXIT (LETT |found| (EQL (SPADCALL |e| (QREFELT |$| 17)) |sm1|) |FFIELDC-;createPrimitiveElement;S;8|))) (LETT |i| (|+| |i| 1) |FFIELDC-;createPrimitiveElement;S;8|) (GO G190) G191 (EXIT NIL)) (EXIT |e|)))))
+
+(DEFUN |FFIELDC-;primitive?;SB;9| (|a| |$|) (PROG (|explist| |q| |exp| #1=#:G83187 |equalone|) (RETURN (SEQ (COND ((SPADCALL |a| (QREFELT |$| 14)) (QUOTE NIL)) ((QUOTE T) (SEQ (LETT |explist| (SPADCALL (QREFELT |$| 47)) |FFIELDC-;primitive?;SB;9|) (LETT |q| (|-| (SPADCALL (QREFELT |$| 35)) 1) |FFIELDC-;primitive?;SB;9|) (LETT |equalone| (QUOTE NIL) |FFIELDC-;primitive?;SB;9|) (SEQ (LETT |exp| NIL |FFIELDC-;primitive?;SB;9|) (LETT #1# |explist| |FFIELDC-;primitive?;SB;9|) G190 (COND ((OR (ATOM #1#) (PROGN (LETT |exp| (CAR #1#) |FFIELDC-;primitive?;SB;9|) NIL) (NULL (COND (|equalone| (QUOTE NIL)) ((QUOTE T) (QUOTE T))))) (GO G191))) (SEQ (EXIT (LETT |equalone| (SPADCALL (SPADCALL |a| (QUOTIENT2 |q| (QCAR |exp|)) (QREFELT |$| 48)) (QREFELT |$| 49)) |FFIELDC-;primitive?;SB;9|))) (LETT #1# (CDR #1#) |FFIELDC-;primitive?;SB;9|) (GO G190) G191 (EXIT NIL)) (EXIT (COND (|equalone| (QUOTE NIL)) ((QUOTE T) (QUOTE T)))))))))))
+
+(DEFUN |FFIELDC-;order;SPi;10| (|e| |$|) (PROG (|lof| |rec| #1=#:G83195 |primeDivisor| |j| #2=#:G83196 |a| |goon| |ord|) (RETURN (SEQ (COND ((SPADCALL |e| (|spadConstant| |$| 7) (QREFELT |$| 51)) (|error| "order(0) is not defined ")) ((QUOTE T) (SEQ (LETT |ord| (|-| (SPADCALL (QREFELT |$| 35)) 1) |FFIELDC-;order;SPi;10|) (LETT |a| 0 |FFIELDC-;order;SPi;10|) (LETT |lof| (SPADCALL (QREFELT |$| 47)) |FFIELDC-;order;SPi;10|) (SEQ (LETT |rec| NIL |FFIELDC-;order;SPi;10|) (LETT #1# |lof| |FFIELDC-;order;SPi;10|) G190 (COND ((OR (ATOM #1#) (PROGN (LETT |rec| (CAR #1#) |FFIELDC-;order;SPi;10|) NIL)) (GO G191))) (SEQ (LETT |a| (QUOTIENT2 |ord| (LETT |primeDivisor| (QCAR |rec|) |FFIELDC-;order;SPi;10|)) |FFIELDC-;order;SPi;10|) (LETT |goon| (SPADCALL (SPADCALL |e| |a| (QREFELT |$| 48)) (QREFELT |$| 49)) |FFIELDC-;order;SPi;10|) (SEQ (LETT |j| 0 |FFIELDC-;order;SPi;10|) (LETT #2# (|-| (QCDR |rec|) 2) |FFIELDC-;order;SPi;10|) G190 (COND ((OR (QSGREATERP |j| #2#) (NULL |goon|)) (GO G191))) (SEQ (LETT |ord| |a| |FFIELDC-;order;SPi;10|) (LETT |a| (QUOTIENT2 |ord| |primeDivisor|) |FFIELDC-;order;SPi;10|) (EXIT (LETT |goon| (SPADCALL (SPADCALL |e| |a| (QREFELT |$| 48)) (QREFELT |$| 49)) |FFIELDC-;order;SPi;10|))) (LETT |j| (QSADD1 |j|) |FFIELDC-;order;SPi;10|) (GO G190) G191 (EXIT NIL)) (EXIT (COND (|goon| (LETT |ord| |a| |FFIELDC-;order;SPi;10|))))) (LETT #1# (CDR #1#) |FFIELDC-;order;SPi;10|) (GO G190) G191 (EXIT NIL)) (EXIT |ord|))))))))
+
+(DEFUN |FFIELDC-;discreteLog;SNni;11| (|b| |$|) (PROG (|faclist| |gen| |groupord| |f| #1=#:G83216 |fac| |t| #2=#:G83217 |exp| |exptable| |n| |end| |i| |rho| |found| |disc1| |c| |mult| |disclog| |a|) (RETURN (SEQ (COND ((SPADCALL |b| (QREFELT |$| 14)) (|error| "discreteLog: logarithm of zero")) ((QUOTE T) (SEQ (LETT |faclist| (SPADCALL (QREFELT |$| 47)) |FFIELDC-;discreteLog;SNni;11|) (LETT |a| |b| |FFIELDC-;discreteLog;SNni;11|) (LETT |gen| (SPADCALL (QREFELT |$| 53)) |FFIELDC-;discreteLog;SNni;11|) (EXIT (COND ((SPADCALL |b| |gen| (QREFELT |$| 51)) 1) ((QUOTE T) (SEQ (LETT |disclog| 0 |FFIELDC-;discreteLog;SNni;11|) (LETT |mult| 1 |FFIELDC-;discreteLog;SNni;11|) (LETT |groupord| (|-| (SPADCALL (QREFELT |$| 35)) 1) |FFIELDC-;discreteLog;SNni;11|) (LETT |exp| |groupord| |FFIELDC-;discreteLog;SNni;11|) (SEQ (LETT |f| NIL |FFIELDC-;discreteLog;SNni;11|) (LETT #1# |faclist| |FFIELDC-;discreteLog;SNni;11|) G190 (COND ((OR (ATOM #1#) (PROGN (LETT |f| (CAR #1#) |FFIELDC-;discreteLog;SNni;11|) NIL)) (GO G191))) (SEQ (LETT |fac| (QCAR |f|) |FFIELDC-;discreteLog;SNni;11|) (EXIT (SEQ (LETT |t| 0 |FFIELDC-;discreteLog;SNni;11|) (LETT #2# (|-| (QCDR |f|) 1) |FFIELDC-;discreteLog;SNni;11|) G190 (COND ((QSGREATERP |t| #2#) (GO G191))) (SEQ (LETT |exp| (QUOTIENT2 |exp| |fac|) |FFIELDC-;discreteLog;SNni;11|) (LETT |exptable| (SPADCALL |fac| (QREFELT |$| 55)) |FFIELDC-;discreteLog;SNni;11|) (LETT |n| (SPADCALL |exptable| (QREFELT |$| 56)) |FFIELDC-;discreteLog;SNni;11|) (LETT |c| (SPADCALL |a| |exp| (QREFELT |$| 48)) |FFIELDC-;discreteLog;SNni;11|) (LETT |end| (QUOTIENT2 (|-| |fac| 1) |n|) |FFIELDC-;discreteLog;SNni;11|) (LETT |found| (QUOTE NIL) |FFIELDC-;discreteLog;SNni;11|) (LETT |disc1| 0 |FFIELDC-;discreteLog;SNni;11|) (SEQ (LETT |i| 0 |FFIELDC-;discreteLog;SNni;11|) G190 (COND ((OR (QSGREATERP |i| |end|) (NULL (COND (|found| (QUOTE NIL)) ((QUOTE T) (QUOTE T))))) (GO G191))) (SEQ (LETT |rho| (SPADCALL (SPADCALL |c| (QREFELT |$| 11)) |exptable| (QREFELT |$| 58)) |FFIELDC-;discreteLog;SNni;11|) (EXIT (COND ((QEQCAR |rho| 0) (SEQ (LETT |found| (QUOTE T) |FFIELDC-;discreteLog;SNni;11|) (EXIT (LETT |disc1| (|*| (|+| (|*| |n| |i|) (QCDR |rho|)) |mult|) |FFIELDC-;discreteLog;SNni;11|)))) ((QUOTE T) (LETT |c| (SPADCALL |c| (SPADCALL |gen| (|*| (QUOTIENT2 |groupord| |fac|) (|-| |n|)) (QREFELT |$| 48)) (QREFELT |$| 59)) |FFIELDC-;discreteLog;SNni;11|))))) (LETT |i| (QSADD1 |i|) |FFIELDC-;discreteLog;SNni;11|) (GO G190) G191 (EXIT NIL)) (EXIT (COND (|found| (SEQ (LETT |mult| (|*| |mult| |fac|) |FFIELDC-;discreteLog;SNni;11|) (LETT |disclog| (|+| |disclog| |disc1|) |FFIELDC-;discreteLog;SNni;11|) (EXIT (LETT |a| (SPADCALL |a| (SPADCALL |gen| (|-| |disc1|) (QREFELT |$| 48)) (QREFELT |$| 59)) |FFIELDC-;discreteLog;SNni;11|)))) ((QUOTE T) (|error| "discreteLog: ?? discrete logarithm"))))) (LETT |t| (QSADD1 |t|) |FFIELDC-;discreteLog;SNni;11|) (GO G190) G191 (EXIT NIL)))) (LETT #1# (CDR #1#) |FFIELDC-;discreteLog;SNni;11|) (GO G190) G191 (EXIT NIL)) (EXIT |disclog|))))))))))))
+
+(DEFUN |FFIELDC-;discreteLog;2SU;12| (|logbase| |b| |$|) (PROG (|groupord| |faclist| |f| #1=#:G83235 |fac| |primroot| |t| #2=#:G83236 |exp| |rhoHelp| #3=#:G83234 |rho| |disclog| |mult| |a|) (RETURN (SEQ (EXIT (COND ((SPADCALL |b| (QREFELT |$| 14)) (SEQ (SPADCALL "discreteLog: logarithm of zero" (QREFELT |$| 64)) (EXIT (CONS 1 "failed")))) ((SPADCALL |logbase| (QREFELT |$| 14)) (SEQ (SPADCALL "discreteLog: logarithm to base zero" (QREFELT |$| 64)) (EXIT (CONS 1 "failed")))) ((SPADCALL |b| |logbase| (QREFELT |$| 51)) (CONS 0 1)) ((QUOTE T) (COND ((NULL (ZEROP (REMAINDER2 (LETT |groupord| (SPADCALL |logbase| (QREFELT |$| 17)) |FFIELDC-;discreteLog;2SU;12|) (SPADCALL |b| (QREFELT |$| 17))))) (SEQ (SPADCALL "discreteLog: second argument not in cyclic group generated by first argument" (QREFELT |$| 64)) (EXIT (CONS 1 "failed")))) ((QUOTE T) (SEQ (LETT |faclist| (SPADCALL (SPADCALL |groupord| (QREFELT |$| 66)) (QREFELT |$| 68)) |FFIELDC-;discreteLog;2SU;12|) (LETT |a| |b| |FFIELDC-;discreteLog;2SU;12|) (LETT |disclog| 0 |FFIELDC-;discreteLog;2SU;12|) (LETT |mult| 1 |FFIELDC-;discreteLog;2SU;12|) (LETT |exp| |groupord| |FFIELDC-;discreteLog;2SU;12|) (SEQ (LETT |f| NIL |FFIELDC-;discreteLog;2SU;12|) (LETT #1# |faclist| |FFIELDC-;discreteLog;2SU;12|) G190 (COND ((OR (ATOM #1#) (PROGN (LETT |f| (CAR #1#) |FFIELDC-;discreteLog;2SU;12|) NIL)) (GO G191))) (SEQ (LETT |fac| (QCAR |f|) |FFIELDC-;discreteLog;2SU;12|) (LETT |primroot| (SPADCALL |logbase| (QUOTIENT2 |groupord| |fac|) (QREFELT |$| 48)) |FFIELDC-;discreteLog;2SU;12|) (EXIT (SEQ (LETT |t| 0 |FFIELDC-;discreteLog;2SU;12|) (LETT #2# (|-| (QCDR |f|) 1) |FFIELDC-;discreteLog;2SU;12|) G190 (COND ((QSGREATERP |t| #2#) (GO G191))) (SEQ (LETT |exp| (QUOTIENT2 |exp| |fac|) |FFIELDC-;discreteLog;2SU;12|) (LETT |rhoHelp| (SPADCALL |primroot| (SPADCALL |a| |exp| (QREFELT |$| 48)) |fac| (QREFELT |$| 70)) |FFIELDC-;discreteLog;2SU;12|) (EXIT (COND ((QEQCAR |rhoHelp| 1) (PROGN (LETT #3# (CONS 1 "failed") |FFIELDC-;discreteLog;2SU;12|) (GO #3#))) ((QUOTE T) (SEQ (LETT |rho| (|*| (QCDR |rhoHelp|) |mult|) |FFIELDC-;discreteLog;2SU;12|) (LETT |disclog| (|+| |disclog| |rho|) |FFIELDC-;discreteLog;2SU;12|) (LETT |mult| (|*| |mult| |fac|) |FFIELDC-;discreteLog;2SU;12|) (EXIT (LETT |a| (SPADCALL |a| (SPADCALL |logbase| (|-| |rho|) (QREFELT |$| 48)) (QREFELT |$| 59)) |FFIELDC-;discreteLog;2SU;12|))))))) (LETT |t| (QSADD1 |t|) |FFIELDC-;discreteLog;2SU;12|) (GO G190) G191 (EXIT NIL)))) (LETT #1# (CDR #1#) |FFIELDC-;discreteLog;2SU;12|) (GO G190) G191 (EXIT NIL)) (EXIT (CONS 0 |disclog|)))))))) #3# (EXIT #3#)))))
+
+(DEFUN |FFIELDC-;squareFreePolynomial| (|f| |$|) (SPADCALL |f| (QREFELT |$| 75)))
+
+(DEFUN |FFIELDC-;factorPolynomial| (|f| |$|) (SPADCALL |f| (QREFELT |$| 77)))
+
+(DEFUN |FFIELDC-;factorSquareFreePolynomial| (|f| |$|) (PROG (|flist| |u| #1=#:G83248 #2=#:G83245 #3=#:G83243 #4=#:G83244) (RETURN (SEQ (COND ((SPADCALL |f| (|spadConstant| |$| 78) (QREFELT |$| 79)) (|spadConstant| |$| 80)) ((QUOTE T) (SEQ (LETT |flist| (SPADCALL |f| (QUOTE T) (QREFELT |$| 83)) |FFIELDC-;factorSquareFreePolynomial|) (EXIT (SPADCALL (SPADCALL (QCAR |flist|) (QREFELT |$| 84)) (PROGN (LETT #4# NIL |FFIELDC-;factorSquareFreePolynomial|) (SEQ (LETT |u| NIL |FFIELDC-;factorSquareFreePolynomial|) (LETT #1# (QCDR |flist|) |FFIELDC-;factorSquareFreePolynomial|) G190 (COND ((OR (ATOM #1#) (PROGN (LETT |u| (CAR #1#) |FFIELDC-;factorSquareFreePolynomial|) NIL)) (GO G191))) (SEQ (EXIT (PROGN (LETT #2# (SPADCALL (QCAR |u|) (QCDR |u|) (QREFELT |$| 85)) |FFIELDC-;factorSquareFreePolynomial|) (COND (#4# (LETT #3# (SPADCALL #3# #2# (QREFELT |$| 86)) |FFIELDC-;factorSquareFreePolynomial|)) ((QUOTE T) (PROGN (LETT #3# #2# |FFIELDC-;factorSquareFreePolynomial|) (LETT #4# (QUOTE T) |FFIELDC-;factorSquareFreePolynomial|))))))) (LETT #1# (CDR #1#) |FFIELDC-;factorSquareFreePolynomial|) (GO G190) G191 (EXIT NIL)) (COND (#4# #3#) ((QUOTE T) (|spadConstant| |$| 87)))) (QREFELT |$| 88))))))))))
+
+(DEFUN |FFIELDC-;gcdPolynomial;3Sup;16| (|f| |g| |$|) (SPADCALL |f| |g| (QREFELT |$| 90)))
+
+(DEFUN |FiniteFieldCategory&| (|#1|) (PROG (|DV$1| |dv$| |$| |pv$|) (RETURN (PROGN (LETT |DV$1| (|devaluate| |#1|) . #1=(|FiniteFieldCategory&|)) (LETT |dv$| (LIST (QUOTE |FiniteFieldCategory&|) |DV$1|) . #1#) (LETT |$| (GETREFV 93) . #1#) (QSETREFV |$| 0 |dv$|) (QSETREFV |$| 3 (LETT |pv$| (|buildPredVector| 0 0 NIL) . #1#)) (|stuffDomainSlots| |$|) (QSETREFV |$| 6 |#1|) |$|))))
+
+(MAKEPROP (QUOTE |FiniteFieldCategory&|) (QUOTE |infovec|) (LIST (QUOTE #(NIL NIL NIL NIL NIL NIL (|local| |#1|) (0 . |Zero|) |FFIELDC-;differentiate;2S;1| |FFIELDC-;init;S;2| (|PositiveInteger|) (4 . |lookup|) (9 . |index|) (|Boolean|) (14 . |zero?|) (|Union| |$| (QUOTE "failed")) |FFIELDC-;nextItem;SU;3| (19 . |order|) (|Integer|) (|OnePointCompletion| 10) (24 . |coerce|) |FFIELDC-;order;SOpc;4| (|List| 26) (|Matrix| 6) (29 . |nullSpace|) (|Mapping| 13 6) (|Vector| 6) (34 . |every?|) (40 . |charthRoot|) (|Mapping| 6 6) (45 . |map|) (|Union| (|Vector| |$|) (QUOTE "failed")) (|Matrix| |$|) |FFIELDC-;conditionP;MU;5| (|NonNegativeInteger|) (51 . |size|) (55 . |characteristic|) (59 . |**|) |FFIELDC-;charthRoot;2S;6| |FFIELDC-;charthRoot;SU;7| (65 . |One|) (|Union| (QUOTE "prime") (QUOTE "polynomial") (QUOTE "normal") (QUOTE "cyclic")) (69 . |representationType|) (73 . |=|) |FFIELDC-;createPrimitiveElement;S;8| (|Record| (|:| |factor| 18) (|:| |exponent| 18)) (|List| 45) (79 . |factorsOfCyclicGroupSize|) (83 . |**|) (89 . |one?|) |FFIELDC-;primitive?;SB;9| (94 . |=|) |FFIELDC-;order;SPi;10| (100 . |primitiveElement|) (|Table| 10 34) (104 . |tableForDiscreteLogarithm|) (109 . |#|) (|Union| 34 (QUOTE "failed")) (114 . |search|) (120 . |*|) |FFIELDC-;discreteLog;SNni;11| (|Void|) (|String|) (|OutputForm|) (126 . |messagePrint|) (|Factored| |$|) (131 . |factor|) (|Factored| 18) (136 . |factors|) (|DiscreteLogarithmPackage| 6) (141 . |shanksDiscLogAlgorithm|) |FFIELDC-;discreteLog;2SU;12| (|Factored| 73) (|SparseUnivariatePolynomial| 6) (|UnivariatePolynomialSquareFree| 6 73) (148 . |squareFree|) (|DistinctDegreeFactorize| 6 73) (153 . |factor|) (158 . |Zero|) (162 . |=|) (168 . |Zero|) (|Record| (|:| |irr| 73) (|:| |pow| 18)) (|Record| (|:| |cont| 6) (|:| |factors| (|List| 81))) (172 . |distdfact|) (178 . |coerce|) (183 . |primeFactor|) (189 . |*|) (195 . |One|) (199 . |*|) (|EuclideanDomain&| 73) (205 . |gcd|) (|SparseUnivariatePolynomial| |$|) |FFIELDC-;gcdPolynomial;3Sup;16|)) (QUOTE #(|primitive?| 211 |order| 216 |nextItem| 226 |init| 231 |gcdPolynomial| 235 |discreteLog| 241 |differentiate| 252 |createPrimitiveElement| 257 |conditionP| 261 |charthRoot| 266)) (QUOTE NIL) (CONS (|makeByteWordVec2| 1 (QUOTE NIL)) (CONS (QUOTE #()) (CONS (QUOTE #()) (|makeByteWordVec2| 92 (QUOTE (0 6 0 7 1 6 10 0 11 1 6 0 10 12 1 6 13 0 14 1 6 10 0 17 1 19 0 18 20 1 23 22 0 24 2 26 13 25 0 27 1 6 0 0 28 2 26 0 29 0 30 0 6 34 35 0 6 34 36 2 6 0 0 34 37 0 6 0 40 0 6 41 42 2 41 13 0 0 43 0 6 46 47 2 6 0 0 18 48 1 6 13 0 49 2 6 13 0 0 51 0 6 0 53 1 6 54 18 55 1 54 34 0 56 2 54 57 10 0 58 2 6 0 0 0 59 1 63 61 62 64 1 18 65 0 66 1 67 46 0 68 3 69 57 6 6 34 70 1 74 72 73 75 1 76 72 73 77 0 73 0 78 2 73 13 0 0 79 0 72 0 80 2 76 82 73 13 83 1 73 0 6 84 2 72 0 73 18 85 2 72 0 0 0 86 0 72 0 87 2 72 0 73 0 88 2 89 0 0 0 90 1 0 13 0 50 1 0 10 0 52 1 0 19 0 21 1 0 15 0 16 0 0 0 9 2 0 91 91 91 92 1 0 34 0 60 2 0 57 0 0 71 1 0 0 0 8 0 0 0 44 1 0 31 32 33 1 0 0 0 38 1 0 15 0 39)))))) (QUOTE |lookupComplete|)))
+@
+\section{package FFSLPE FiniteFieldSolveLinearPolynomialEquation}
+<<package FFSLPE FiniteFieldSolveLinearPolynomialEquation>>=
+)abbrev package FFSLPE FiniteFieldSolveLinearPolynomialEquation
+++ Author: Davenport
+++ Date Created: 1991
+++ Date Last Updated:
+++ Basic Functions:
+++ Related Constructors:
+++ Also See:
+++ AMS Classifications:
+++ Keywords:
+++ References:
+++ Description:
+++ This package solves linear diophantine equations for Bivariate polynomials
+++ over finite fields
+
+FiniteFieldSolveLinearPolynomialEquation(F:FiniteFieldCategory,
+ FP:UnivariatePolynomialCategory F,
+ FPP:UnivariatePolynomialCategory FP): with
+ solveLinearPolynomialEquation: (List FPP, FPP) -> Union(List FPP,"failed")
+ ++ solveLinearPolynomialEquation([f1, ..., fn], g)
+ ++ (where the fi are relatively prime to each other)
+ ++ returns a list of ai such that
+ ++ \spad{g/prod fi = sum ai/fi}
+ ++ or returns "failed" if no such list of ai's exists.
+ == add
+ oldlp:List FPP := []
+ slpePrime: FP := monomial(1,1)
+ oldtable:Vector List FPP := []
+ lp: List FPP
+ p: FPP
+ import DistinctDegreeFactorize(F,FP)
+ solveLinearPolynomialEquation(lp,p) ==
+ if (oldlp ^= lp) then
+ -- we have to generate a new table
+ deg:= +/[degree u for u in lp]
+ ans:Union(Vector List FPP,"failed"):="failed"
+ slpePrime:=monomial(1,1)+monomial(1,0) -- x+1: our starting guess
+ while (ans case "failed") repeat
+ ans:=tablePow(deg,slpePrime,lp)$GenExEuclid(FP,FPP)
+ if (ans case "failed") then
+ slpePrime:= nextItem(slpePrime)::FP
+ while (degree slpePrime > 1) and
+ not irreducible? slpePrime repeat
+ slpePrime := nextItem(slpePrime)::FP
+ oldtable:=(ans:: Vector List FPP)
+ answer:=solveid(p,slpePrime,oldtable)
+ answer
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+<<package DLP DiscreteLogarithmPackage>>
+<<category FPC FieldOfPrimeCharacteristic>>
+<<category XF ExtensionField>>
+<<category FAXF FiniteAlgebraicExtensionField>>
+<<category FFIELDC FiniteFieldCategory>>
+<<package FFSLPE FiniteFieldSolveLinearPolynomialEquation>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}