aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/expr.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
committerdos-reis <gdr@axiomatics.org>2007-08-14 05:14:52 +0000
commitab8cc85adde879fb963c94d15675783f2cf4b183 (patch)
treec202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/expr.spad.pamphlet
downloadopen-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz
Initial population.
Diffstat (limited to 'src/algebra/expr.spad.pamphlet')
-rw-r--r--src/algebra/expr.spad.pamphlet915
1 files changed, 915 insertions, 0 deletions
diff --git a/src/algebra/expr.spad.pamphlet b/src/algebra/expr.spad.pamphlet
new file mode 100644
index 00000000..93324931
--- /dev/null
+++ b/src/algebra/expr.spad.pamphlet
@@ -0,0 +1,915 @@
+\documentclass{article}
+\usepackage{axiom}
+\begin{document}
+\title{\$SPAD/src/algebra expr.spad}
+\author{Manuel Bronstein, Barry Trager}
+\maketitle
+\begin{abstract}
+\end{abstract}
+\eject
+\tableofcontents
+\eject
+\section{domain EXPR Expression}
+<<domain EXPR Expression>>=
+)abbrev domain EXPR Expression
+++ Top-level mathematical expressions
+++ Author: Manuel Bronstein
+++ Date Created: 19 July 1988
+++ Date Last Updated: October 1993 (P.Gianni), February 1995 (MB)
+++ Description: Expressions involving symbolic functions.
+++ Keywords: operator, kernel, function.
+Expression(R:OrderedSet): Exports == Implementation where
+ Q ==> Fraction Integer
+ K ==> Kernel %
+ MP ==> SparseMultivariatePolynomial(R, K)
+ AF ==> AlgebraicFunction(R, %)
+ EF ==> ElementaryFunction(R, %)
+ CF ==> CombinatorialFunction(R, %)
+ LF ==> LiouvillianFunction(R, %)
+ AN ==> AlgebraicNumber
+ KAN ==> Kernel AN
+ FSF ==> FunctionalSpecialFunction(R, %)
+ ESD ==> ExpressionSpace_&(%)
+ FSD ==> FunctionSpace_&(%, R)
+ SYMBOL ==> "%symbol"
+ ALGOP ==> "%alg"
+ POWER ==> "%power"::Symbol
+ SUP ==> SparseUnivariatePolynomial
+
+ Exports ==> FunctionSpace R with
+ if R has IntegralDomain then
+ AlgebraicallyClosedFunctionSpace R
+ TranscendentalFunctionCategory
+ CombinatorialOpsCategory
+ LiouvillianFunctionCategory
+ SpecialFunctionCategory
+ reduce: % -> %
+ ++ reduce(f) simplifies all the unreduced algebraic quantities
+ ++ present in f by applying their defining relations.
+ number?: % -> Boolean
+ ++ number?(f) tests if f is rational
+ simplifyPower: (%,Integer) -> %
+ ++ simplifyPower?(f,n) \undocumented{}
+ if R has GcdDomain then
+ factorPolynomial : SUP % -> Factored SUP %
+ ++ factorPolynomial(p) \undocumented{}
+ squareFreePolynomial : SUP % -> Factored SUP %
+ ++ squareFreePolynomial(p) \undocumented{}
+ if R has RetractableTo Integer then RetractableTo AN
+
+ Implementation ==> add
+ import KernelFunctions2(R, %)
+
+ retNotUnit : % -> R
+ retNotUnitIfCan: % -> Union(R, "failed")
+
+ belong? op == true
+
+ retNotUnit x ==
+ (u := constantIfCan(k := retract(x)@K)) case R => u::R
+ error "Not retractable"
+
+ retNotUnitIfCan x ==
+ (r := retractIfCan(x)@Union(K,"failed")) case "failed" => "failed"
+ constantIfCan(r::K)
+
+ if R has IntegralDomain then
+ reduc : (%, List Kernel %) -> %
+ commonk : (%, %) -> List K
+ commonk0 : (List K, List K) -> List K
+ toprat : % -> %
+ algkernels: List K -> List K
+ evl : (MP, K, SparseUnivariatePolynomial %) -> Fraction MP
+ evl0 : (MP, K) -> SparseUnivariatePolynomial Fraction MP
+
+ Rep := Fraction MP
+ 0 == 0$Rep
+ 1 == 1$Rep
+-- one? x == one?(x)$Rep
+ one? x == (x = 1)$Rep
+ zero? x == zero?(x)$Rep
+ - x:% == -$Rep x
+ n:Integer * x:% == n *$Rep x
+ coerce(n:Integer) == coerce(n)$Rep@Rep::%
+ x:% * y:% == reduc(x *$Rep y, commonk(x, y))
+ x:% + y:% == reduc(x +$Rep y, commonk(x, y))
+ (x:% - y:%):% == reduc(x -$Rep y, commonk(x, y))
+ x:% / y:% == reduc(x /$Rep y, commonk(x, y))
+
+ number?(x:%):Boolean ==
+ if R has RetractableTo(Integer) then
+ ground?(x) or ((retractIfCan(x)@Union(Q,"failed")) case Q)
+ else
+ ground?(x)
+
+ simplifyPower(x:%,n:Integer):% ==
+ k : List K := kernels x
+ is?(x,POWER) =>
+ -- Look for a power of a number in case we can do a simplification
+ args : List % := argument first k
+ not(#args = 2) => error "Too many arguments to **"
+ number?(args.1) =>
+ reduc((args.1) **$Rep n, algkernels kernels (args.1))**(args.2)
+ (first args)**(n*second(args))
+ reduc(x **$Rep n, algkernels k)
+
+ x:% ** n:NonNegativeInteger ==
+ n = 0 => 1$%
+ n = 1 => x
+ simplifyPower(numerator x,n pretend Integer) / simplifyPower(denominator x,n pretend Integer)
+
+ x:% ** n:Integer ==
+ n = 0 => 1$%
+ n = 1 => x
+ n = -1 => 1/x
+ simplifyPower(numerator x,n) / simplifyPower(denominator x,n)
+
+ x:% ** n:PositiveInteger ==
+ n = 1 => x
+ simplifyPower(numerator x,n pretend Integer) / simplifyPower(denominator x,n pretend Integer)
+
+ x:% < y:% == x <$Rep y
+ x:% = y:% == x =$Rep y
+ numer x == numer(x)$Rep
+ denom x == denom(x)$Rep
+ coerce(p:MP):% == coerce(p)$Rep
+ reduce x == reduc(x, algkernels kernels x)
+ commonk(x, y) == commonk0(algkernels kernels x, algkernels kernels y)
+ algkernels l == select_!(has?(operator #1, ALGOP), l)
+ toprat f == ratDenom(f, algkernels kernels f)$AlgebraicManipulations(R, %)
+
+ x:MP / y:MP ==
+ reduc(x /$Rep y,commonk0(algkernels variables x,algkernels variables y))
+
+-- since we use the reduction from FRAC SMP which asssumes that the
+-- variables are independent, we must remove algebraic from the denominators
+ reducedSystem(m:Matrix %):Matrix(R) ==
+ mm:Matrix(MP) := reducedSystem(map(toprat, m))$Rep
+ reducedSystem(mm)$MP
+
+-- since we use the reduction from FRAC SMP which asssumes that the
+-- variables are independent, we must remove algebraic from the denominators
+ reducedSystem(m:Matrix %, v:Vector %):
+ Record(mat:Matrix R, vec:Vector R) ==
+ r:Record(mat:Matrix MP, vec:Vector MP) :=
+ reducedSystem(map(toprat, m), map(toprat, v))$Rep
+ reducedSystem(r.mat, r.vec)$MP
+
+-- The result MUST be left sorted deepest first MB 3/90
+ commonk0(x, y) ==
+ ans := empty()$List(K)
+ for k in reverse_! x repeat if member?(k, y) then ans := concat(k, ans)
+ ans
+
+ rootOf(x:SparseUnivariatePolynomial %, v:Symbol) == rootOf(x,v)$AF
+ pi() == pi()$EF
+ exp x == exp(x)$EF
+ log x == log(x)$EF
+ sin x == sin(x)$EF
+ cos x == cos(x)$EF
+ tan x == tan(x)$EF
+ cot x == cot(x)$EF
+ sec x == sec(x)$EF
+ csc x == csc(x)$EF
+ asin x == asin(x)$EF
+ acos x == acos(x)$EF
+ atan x == atan(x)$EF
+ acot x == acot(x)$EF
+ asec x == asec(x)$EF
+ acsc x == acsc(x)$EF
+ sinh x == sinh(x)$EF
+ cosh x == cosh(x)$EF
+ tanh x == tanh(x)$EF
+ coth x == coth(x)$EF
+ sech x == sech(x)$EF
+ csch x == csch(x)$EF
+ asinh x == asinh(x)$EF
+ acosh x == acosh(x)$EF
+ atanh x == atanh(x)$EF
+ acoth x == acoth(x)$EF
+ asech x == asech(x)$EF
+ acsch x == acsch(x)$EF
+
+ abs x == abs(x)$FSF
+ Gamma x == Gamma(x)$FSF
+ Gamma(a, x) == Gamma(a, x)$FSF
+ Beta(x,y) == Beta(x,y)$FSF
+ digamma x == digamma(x)$FSF
+ polygamma(k,x) == polygamma(k,x)$FSF
+ besselJ(v,x) == besselJ(v,x)$FSF
+ besselY(v,x) == besselY(v,x)$FSF
+ besselI(v,x) == besselI(v,x)$FSF
+ besselK(v,x) == besselK(v,x)$FSF
+ airyAi x == airyAi(x)$FSF
+ airyBi x == airyBi(x)$FSF
+
+ x:% ** y:% == x **$CF y
+ factorial x == factorial(x)$CF
+ binomial(n, m) == binomial(n, m)$CF
+ permutation(n, m) == permutation(n, m)$CF
+ factorials x == factorials(x)$CF
+ factorials(x, n) == factorials(x, n)$CF
+ summation(x:%, n:Symbol) == summation(x, n)$CF
+ summation(x:%, s:SegmentBinding %) == summation(x, s)$CF
+ product(x:%, n:Symbol) == product(x, n)$CF
+ product(x:%, s:SegmentBinding %) == product(x, s)$CF
+
+ erf x == erf(x)$LF
+ Ei x == Ei(x)$LF
+ Si x == Si(x)$LF
+ Ci x == Ci(x)$LF
+ li x == li(x)$LF
+ dilog x == dilog(x)$LF
+ integral(x:%, n:Symbol) == integral(x, n)$LF
+ integral(x:%, s:SegmentBinding %) == integral(x, s)$LF
+
+ operator op ==
+ belong?(op)$AF => operator(op)$AF
+ belong?(op)$EF => operator(op)$EF
+ belong?(op)$CF => operator(op)$CF
+ belong?(op)$LF => operator(op)$LF
+ belong?(op)$FSF => operator(op)$FSF
+ belong?(op)$FSD => operator(op)$FSD
+ belong?(op)$ESD => operator(op)$ESD
+ nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K)
+ (n := arity op) case "failed" => operator name op
+ operator(name op, n::NonNegativeInteger)
+
+ reduc(x, l) ==
+ for k in l repeat
+ p := minPoly k
+ x := evl(numer x, k, p) /$Rep evl(denom x, k, p)
+ x
+
+ evl0(p, k) ==
+ numer univariate(p::Fraction(MP),
+ k)$PolynomialCategoryQuotientFunctions(IndexedExponents K,
+ K,R,MP,Fraction MP)
+
+ -- uses some operations from Rep instead of % in order not to
+ -- reduce recursively during those operations.
+ evl(p, k, m) ==
+ degree(p, k) < degree m => p::Fraction(MP)
+ (((evl0(p, k) pretend SparseUnivariatePolynomial($)) rem m)
+ pretend SparseUnivariatePolynomial Fraction MP) (k::MP::Fraction(MP))
+
+ if R has GcdDomain then
+ noalg?: SUP % -> Boolean
+
+ noalg? p ==
+ while p ^= 0 repeat
+ not empty? algkernels kernels leadingCoefficient p => return false
+ p := reductum p
+ true
+
+ gcdPolynomial(p:SUP %, q:SUP %) ==
+ noalg? p and noalg? q => gcdPolynomial(p, q)$Rep
+ gcdPolynomial(p, q)$GcdDomain_&(%)
+
+ factorPolynomial(x:SUP %) : Factored SUP % ==
+ uf:= factor(x pretend SUP(Rep))$SupFractionFactorizer(
+ IndexedExponents K,K,R,MP)
+ uf pretend Factored SUP %
+
+ squareFreePolynomial(x:SUP %) : Factored SUP % ==
+ uf:= squareFree(x pretend SUP(Rep))$SupFractionFactorizer(
+ IndexedExponents K,K,R,MP)
+ uf pretend Factored SUP %
+
+ if R is AN then
+ -- this is to force the coercion R -> EXPR R to be used
+ -- instead of the coercioon AN -> EXPR R which loops.
+ -- simpler looking code will fail! MB 10/91
+ coerce(x:AN):% == (monomial(x, 0$IndexedExponents(K))$MP)::%
+
+ if (R has RetractableTo Integer) then
+ x:% ** r:Q == x **$AF r
+ minPoly k == minPoly(k)$AF
+ definingPolynomial x == definingPolynomial(x)$AF
+ retract(x:%):Q == retract(x)$Rep
+ retractIfCan(x:%):Union(Q, "failed") == retractIfCan(x)$Rep
+
+ if not(R is AN) then
+ k2expr : KAN -> %
+ smp2expr: SparseMultivariatePolynomial(Integer, KAN) -> %
+ R2AN : R -> Union(AN, "failed")
+ k2an : K -> Union(AN, "failed")
+ smp2an : MP -> Union(AN, "failed")
+
+
+ coerce(x:AN):% == smp2expr(numer x) / smp2expr(denom x)
+ k2expr k == map(#1::%, k)$ExpressionSpaceFunctions2(AN, %)
+
+ smp2expr p ==
+ map(k2expr,#1::%,p)$PolynomialCategoryLifting(IndexedExponents KAN,
+ KAN, Integer, SparseMultivariatePolynomial(Integer, KAN), %)
+
+ retractIfCan(x:%):Union(AN, "failed") ==
+ ((n:= smp2an numer x) case AN) and ((d:= smp2an denom x) case AN)
+ => (n::AN) / (d::AN)
+ "failed"
+
+ R2AN r ==
+ (u := retractIfCan(r::%)@Union(Q, "failed")) case Q => u::Q::AN
+ "failed"
+
+ k2an k ==
+ not(belong?(op := operator k)$AN) => "failed"
+ arg:List(AN) := empty()
+ for x in argument k repeat
+ if (a := retractIfCan(x)@Union(AN, "failed")) case "failed" then
+ return "failed"
+ else arg := concat(a::AN, arg)
+ (operator(op)$AN) reverse_!(arg)
+
+ smp2an p ==
+ (x1 := mainVariable p) case "failed" => R2AN leadingCoefficient p
+ up := univariate(p, k := x1::K)
+ (t := k2an k) case "failed" => "failed"
+ ans:AN := 0
+ while not ground? up repeat
+ (c:=smp2an leadingCoefficient up) case "failed" => return "failed"
+ ans := ans + (c::AN) * (t::AN) ** (degree up)
+ up := reductum up
+ (c := smp2an leadingCoefficient up) case "failed" => "failed"
+ ans + c::AN
+
+ if R has ConvertibleTo InputForm then
+ convert(x:%):InputForm == convert(x)$Rep
+ import MakeUnaryCompiledFunction(%, %, %)
+ eval(f:%, op: BasicOperator, g:%, x:Symbol):% ==
+ eval(f,[op],[g],x)
+ eval(f:%, ls:List BasicOperator, lg:List %, x:Symbol) ==
+ -- handle subsrcipted symbols by renaming -> eval -> renaming back
+ llsym:List List Symbol:=[variables g for g in lg]
+ lsym:List Symbol:= removeDuplicates concat llsym
+ lsd:List Symbol:=select (scripted?,lsym)
+ empty? lsd=> eval(f,ls,[compiledFunction(g, x) for g in lg])
+ ns:List Symbol:=[new()$Symbol for i in lsd]
+ lforwardSubs:List Equation % := [(i::%)= (j::%) for i in lsd for j in ns]
+ lbackwardSubs:List Equation % := [(j::%)= (i::%) for i in lsd for j in ns]
+ nlg:List % :=[subst(g,lforwardSubs) for g in lg]
+ res:% :=eval(f, ls, [compiledFunction(g, x) for g in nlg])
+ subst(res,lbackwardSubs)
+ if R has PatternMatchable Integer then
+ patternMatch(x:%, p:Pattern Integer,
+ l:PatternMatchResult(Integer, %)) ==
+ patternMatch(x, p, l)$PatternMatchFunctionSpace(Integer, R, %)
+
+ if R has PatternMatchable Float then
+ patternMatch(x:%, p:Pattern Float,
+ l:PatternMatchResult(Float, %)) ==
+ patternMatch(x, p, l)$PatternMatchFunctionSpace(Float, R, %)
+
+ else -- R is not an integral domain
+ operator op ==
+ belong?(op)$FSD => operator(op)$FSD
+ belong?(op)$ESD => operator(op)$ESD
+ nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K)
+ (n := arity op) case "failed" => operator name op
+ operator(name op, n::NonNegativeInteger)
+
+ if R has Ring then
+ Rep := MP
+ 0 == 0$Rep
+ 1 == 1$Rep
+ - x:% == -$Rep x
+ n:Integer *x:% == n *$Rep x
+ x:% * y:% == x *$Rep y
+ x:% + y:% == x +$Rep y
+ x:% = y:% == x =$Rep y
+ x:% < y:% == x <$Rep y
+ numer x == x@Rep
+ coerce(p:MP):% == p
+
+ reducedSystem(m:Matrix %):Matrix(R) ==
+ reducedSystem(m)$Rep
+
+ reducedSystem(m:Matrix %, v:Vector %):
+ Record(mat:Matrix R, vec:Vector R) ==
+ reducedSystem(m, v)$Rep
+
+ if R has ConvertibleTo InputForm then
+ convert(x:%):InputForm == convert(x)$Rep
+
+ if R has PatternMatchable Integer then
+ kintmatch: (K,Pattern Integer,PatternMatchResult(Integer,Rep))
+ -> PatternMatchResult(Integer, Rep)
+
+ kintmatch(k, p, l) ==
+ patternMatch(k, p, l pretend PatternMatchResult(Integer, %)
+ )$PatternMatchKernel(Integer, %)
+ pretend PatternMatchResult(Integer, Rep)
+
+ patternMatch(x:%, p:Pattern Integer,
+ l:PatternMatchResult(Integer, %)) ==
+ patternMatch(x@Rep, p,
+ l pretend PatternMatchResult(Integer, Rep),
+ kintmatch
+ )$PatternMatchPolynomialCategory(Integer,
+ IndexedExponents K, K, R, Rep)
+ pretend PatternMatchResult(Integer, %)
+
+ if R has PatternMatchable Float then
+ kfltmatch: (K, Pattern Float, PatternMatchResult(Float, Rep))
+ -> PatternMatchResult(Float, Rep)
+
+ kfltmatch(k, p, l) ==
+ patternMatch(k, p, l pretend PatternMatchResult(Float, %)
+ )$PatternMatchKernel(Float, %)
+ pretend PatternMatchResult(Float, Rep)
+
+ patternMatch(x:%, p:Pattern Float,
+ l:PatternMatchResult(Float, %)) ==
+ patternMatch(x@Rep, p,
+ l pretend PatternMatchResult(Float, Rep),
+ kfltmatch
+ )$PatternMatchPolynomialCategory(Float,
+ IndexedExponents K, K, R, Rep)
+ pretend PatternMatchResult(Float, %)
+
+ else -- R is not even a ring
+ if R has AbelianMonoid then
+ import ListToMap(K, %)
+
+ kereval : (K, List K, List %) -> %
+ subeval : (K, List K, List %) -> %
+
+ Rep := FreeAbelianGroup K
+
+ 0 == 0$Rep
+ x:% + y:% == x +$Rep y
+ x:% = y:% == x =$Rep y
+ x:% < y:% == x <$Rep y
+ coerce(k:K):% == coerce(k)$Rep
+ kernels x == [f.gen for f in terms x]
+ coerce(x:R):% == (zero? x => 0; constantKernel(x)::%)
+ retract(x:%):R == (zero? x => 0; retNotUnit x)
+ coerce(x:%):OutputForm == coerce(x)$Rep
+ kereval(k, lk, lv) == match(lk, lv, k, map(eval(#1, lk, lv), #1))
+
+ subeval(k, lk, lv) ==
+ match(lk, lv, k,
+ kernel(operator #1, [subst(a, lk, lv) for a in argument #1]))
+
+ isPlus x ==
+ empty?(l := terms x) or empty? rest l => "failed"
+ [t.exp *$Rep t.gen for t in l]$List(%)
+
+ isMult x ==
+ empty?(l := terms x) or not empty? rest l => "failed"
+ t := first l
+ [t.exp, t.gen]
+
+ eval(x:%, lk:List K, lv:List %) ==
+ _+/[t.exp * kereval(t.gen, lk, lv) for t in terms x]
+
+ subst(x:%, lk:List K, lv:List %) ==
+ _+/[t.exp * subeval(t.gen, lk, lv) for t in terms x]
+
+ retractIfCan(x:%):Union(R, "failed") ==
+ zero? x => 0
+ retNotUnitIfCan x
+
+ if R has AbelianGroup then -(x:%) == -$Rep x
+
+-- else -- R is not an AbelianMonoid
+-- if R has SemiGroup then
+-- Rep := FreeGroup K
+-- 1 == 1$Rep
+-- x:% * y:% == x *$Rep y
+-- x:% = y:% == x =$Rep y
+-- coerce(k:K):% == k::Rep
+-- kernels x == [f.gen for f in factors x]
+-- coerce(x:R):% == (one? x => 1; constantKernel x)
+-- retract(x:%):R == (one? x => 1; retNotUnit x)
+-- coerce(x:%):OutputForm == coerce(x)$Rep
+
+-- retractIfCan(x:%):Union(R, "failed") ==
+-- one? x => 1
+-- retNotUnitIfCan x
+
+-- if R has Group then inv(x:%):% == inv(x)$Rep
+
+ else -- R is nothing
+ import ListToMap(K, %)
+
+ Rep := K
+
+ x:% < y:% == x <$Rep y
+ x:% = y:% == x =$Rep y
+ coerce(k:K):% == k
+ kernels x == [x pretend K]
+ coerce(x:R):% == constantKernel x
+ retract(x:%):R == retNotUnit x
+ retractIfCan(x:%):Union(R, "failed") == retNotUnitIfCan x
+ coerce(x:%):OutputForm == coerce(x)$Rep
+
+ eval(x:%, lk:List K, lv:List %) ==
+ match(lk, lv, x pretend K, map(eval(#1, lk, lv), #1))
+
+ subst(x, lk, lv) ==
+ match(lk, lv, x pretend K,
+ kernel(operator #1, [subst(a, lk, lv) for a in argument #1]))
+
+ if R has ConvertibleTo InputForm then
+ convert(x:%):InputForm == convert(x)$Rep
+
+-- if R has PatternMatchable Integer then
+-- convert(x:%):Pattern(Integer) == convert(x)$Rep
+--
+-- patternMatch(x:%, p:Pattern Integer,
+-- l:PatternMatchResult(Integer, %)) ==
+-- patternMatch(x pretend K,p,l)$PatternMatchKernel(Integer, %)
+--
+-- if R has PatternMatchable Float then
+-- convert(x:%):Pattern(Float) == convert(x)$Rep
+--
+-- patternMatch(x:%, p:Pattern Float,
+-- l:PatternMatchResult(Float, %)) ==
+-- patternMatch(x pretend K, p, l)$PatternMatchKernel(Float, %)
+
+@
+\section{package PAN2EXPR PolynomialAN2Expression}
+<<package PAN2EXPR PolynomialAN2Expression>>=
+)abbrev package PAN2EXPR PolynomialAN2Expression
+++ Author: Barry Trager
+++ Date Created: 8 Oct 1991
+++ Description: This package provides a coerce from polynomials over
+++ algebraic numbers to \spadtype{Expression AlgebraicNumber}.
+PolynomialAN2Expression():Target == Implementation where
+ EXPR ==> Expression(Integer)
+ AN ==> AlgebraicNumber
+ PAN ==> Polynomial AN
+ SY ==> Symbol
+ Target ==> with
+ coerce: Polynomial AlgebraicNumber -> Expression(Integer)
+ ++ coerce(p) converts the polynomial \spad{p} with algebraic number
+ ++ coefficients to \spadtype{Expression Integer}.
+ coerce: Fraction Polynomial AlgebraicNumber -> Expression(Integer)
+ ++ coerce(rf) converts \spad{rf}, a fraction of polynomial \spad{p} with
+ ++ algebraic number coefficients to \spadtype{Expression Integer}.
+ Implementation ==> add
+ coerce(p:PAN):EXPR ==
+ map(#1::EXPR, #1::EXPR, p)$PolynomialCategoryLifting(
+ IndexedExponents SY, SY, AN, PAN, EXPR)
+ coerce(rf:Fraction PAN):EXPR ==
+ numer(rf)::EXPR / denom(rf)::EXPR
+
+@
+\section{package EXPR2 ExpressionFunctions2}
+<<package EXPR2 ExpressionFunctions2>>=
+)abbrev package EXPR2 ExpressionFunctions2
+++ Lifting of maps to Expressions
+++ Author: Manuel Bronstein
+++ Description: Lifting of maps to Expressions.
+++ Date Created: 16 Jan 1989
+++ Date Last Updated: 22 Jan 1990
+ExpressionFunctions2(R:OrderedSet, S:OrderedSet):
+ Exports == Implementation where
+ K ==> Kernel R
+ F2 ==> FunctionSpaceFunctions2(R, Expression R, S, Expression S)
+ E2 ==> ExpressionSpaceFunctions2(Expression R, Expression S)
+
+ Exports ==> with
+ map: (R -> S, Expression R) -> Expression S
+ ++ map(f, e) applies f to all the constants appearing in e.
+
+ Implementation == add
+ if S has Ring and R has Ring then
+ map(f, r) == map(f, r)$F2
+ else
+ map(f, r) == map(map(f, #1), retract r)$E2
+
+@
+\section{package PMPREDFS FunctionSpaceAttachPredicates}
+<<package PMPREDFS FunctionSpaceAttachPredicates>>=
+)abbrev package PMPREDFS FunctionSpaceAttachPredicates
+++ Predicates for pattern-matching.
+++ Author: Manuel Bronstein
+++ Description: Attaching predicates to symbols for pattern matching.
+++ Date Created: 21 Mar 1989
+++ Date Last Updated: 23 May 1990
+++ Keywords: pattern, matching.
+FunctionSpaceAttachPredicates(R, F, D): Exports == Implementation where
+ R: OrderedSet
+ F: FunctionSpace R
+ D: Type
+
+ K ==> Kernel F
+ PMPRED ==> "%pmpredicate"
+
+ Exports ==> with
+ suchThat: (F, D -> Boolean) -> F
+ ++ suchThat(x, foo) attaches the predicate foo to x;
+ ++ error if x is not a symbol.
+ suchThat: (F, List(D -> Boolean)) -> F
+ ++ suchThat(x, [f1, f2, ..., fn]) attaches the predicate
+ ++ f1 and f2 and ... and fn to x.
+ ++ Error: if x is not a symbol.
+
+ Implementation ==> add
+ import AnyFunctions1(D -> Boolean)
+
+ st : (K, List Any) -> F
+ preds: K -> List Any
+ mkk : BasicOperator -> F
+
+ suchThat(p:F, f:D -> Boolean) == suchThat(p, [f])
+ mkk op == kernel(op, empty()$List(F))
+
+ preds k ==
+ (u := property(operator k, PMPRED)) case "failed" => empty()
+ (u::None) pretend List(Any)
+
+ st(k, l) ==
+ mkk assert(setProperty(copy operator k, PMPRED,
+ concat(preds k, l) pretend None), string(new()$Symbol))
+
+ suchThat(p:F, l:List(D -> Boolean)) ==
+ retractIfCan(p)@Union(Symbol, "failed") case Symbol =>
+ st(retract(p)@K, [f::Any for f in l])
+ error "suchThat must be applied to symbols only"
+
+@
+\section{package PMASSFS FunctionSpaceAssertions}
+<<package PMASSFS FunctionSpaceAssertions>>=
+)abbrev package PMASSFS FunctionSpaceAssertions
+++ Assertions for pattern-matching
+++ Author: Manuel Bronstein
+++ Description: Attaching assertions to symbols for pattern matching;
+++ Date Created: 21 Mar 1989
+++ Date Last Updated: 23 May 1990
+++ Keywords: pattern, matching.
+FunctionSpaceAssertions(R, F): Exports == Implementation where
+ R: OrderedSet
+ F: FunctionSpace R
+
+ K ==> Kernel F
+ PMOPT ==> "%pmoptional"
+ PMMULT ==> "%pmmultiple"
+ PMCONST ==> "%pmconstant"
+
+ Exports ==> with
+ assert : (F, String) -> F
+ ++ assert(x, s) makes the assertion s about x.
+ ++ Error: if x is not a symbol.
+ constant: F -> F
+ ++ constant(x) tells the pattern matcher that x should
+ ++ match only the symbol 'x and no other quantity.
+ ++ Error: if x is not a symbol.
+ optional: F -> F
+ ++ optional(x) tells the pattern matcher that x can match
+ ++ an identity (0 in a sum, 1 in a product or exponentiation).
+ ++ Error: if x is not a symbol.
+ multiple: F -> F
+ ++ multiple(x) tells the pattern matcher that x should
+ ++ preferably match a multi-term quantity in a sum or product.
+ ++ For matching on lists, multiple(x) tells the pattern matcher
+ ++ that x should match a list instead of an element of a list.
+ ++ Error: if x is not a symbol.
+
+ Implementation ==> add
+ ass : (K, String) -> F
+ asst : (K, String) -> F
+ mkk : BasicOperator -> F
+
+ mkk op == kernel(op, empty()$List(F))
+
+ ass(k, s) ==
+ has?(op := operator k, s) => k::F
+ mkk assert(copy op, s)
+
+ asst(k, s) ==
+ has?(op := operator k, s) => k::F
+ mkk assert(op, s)
+
+ assert(x, s) ==
+ retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
+ asst(retract(x)@K, s)
+ error "assert must be applied to symbols only"
+
+ constant x ==
+ retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
+ ass(retract(x)@K, PMCONST)
+ error "constant must be applied to symbols only"
+
+ optional x ==
+ retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
+ ass(retract(x)@K, PMOPT)
+ error "optional must be applied to symbols only"
+
+ multiple x ==
+ retractIfCan(x)@Union(Symbol, "failed") case Symbol =>
+ ass(retract(x)@K, PMMULT)
+ error "multiple must be applied to symbols only"
+
+@
+\section{package PMPRED AttachPredicates}
+<<package PMPRED AttachPredicates>>=
+)abbrev package PMPRED AttachPredicates
+++ Predicates for pattern-matching
+++ Author: Manuel Bronstein
+++ Description: Attaching predicates to symbols for pattern matching.
+++ Date Created: 21 Mar 1989
+++ Date Last Updated: 23 May 1990
+++ Keywords: pattern, matching.
+AttachPredicates(D:Type): Exports == Implementation where
+ FE ==> Expression Integer
+
+ Exports ==> with
+ suchThat: (Symbol, D -> Boolean) -> FE
+ ++ suchThat(x, foo) attaches the predicate foo to x.
+ suchThat: (Symbol, List(D -> Boolean)) -> FE
+ ++ suchThat(x, [f1, f2, ..., fn]) attaches the predicate
+ ++ f1 and f2 and ... and fn to x.
+
+ Implementation ==> add
+ import FunctionSpaceAttachPredicates(Integer, FE, D)
+
+ suchThat(p:Symbol, f:D -> Boolean) == suchThat(p::FE, f)
+ suchThat(p:Symbol, l:List(D -> Boolean)) == suchThat(p::FE, l)
+
+@
+\section{package PMASS PatternMatchAssertions}
+<<package PMASS PatternMatchAssertions>>=
+)abbrev package PMASS PatternMatchAssertions
+++ Assertions for pattern-matching
+++ Author: Manuel Bronstein
+++ Description: Attaching assertions to symbols for pattern matching.
+++ Date Created: 21 Mar 1989
+++ Date Last Updated: 23 May 1990
+++ Keywords: pattern, matching.
+PatternMatchAssertions(): Exports == Implementation where
+ FE ==> Expression Integer
+
+ Exports ==> with
+ assert : (Symbol, String) -> FE
+ ++ assert(x, s) makes the assertion s about x.
+ constant: Symbol -> FE
+ ++ constant(x) tells the pattern matcher that x should
+ ++ match only the symbol 'x and no other quantity.
+ optional: Symbol -> FE
+ ++ optional(x) tells the pattern matcher that x can match
+ ++ an identity (0 in a sum, 1 in a product or exponentiation).;
+ multiple: Symbol -> FE
+ ++ multiple(x) tells the pattern matcher that x should
+ ++ preferably match a multi-term quantity in a sum or product.
+ ++ For matching on lists, multiple(x) tells the pattern matcher
+ ++ that x should match a list instead of an element of a list.
+
+ Implementation ==> add
+ import FunctionSpaceAssertions(Integer, FE)
+
+ constant x == constant(x::FE)
+ multiple x == multiple(x::FE)
+ optional x == optional(x::FE)
+ assert(x, s) == assert(x::FE, s)
+
+@
+\section{domain HACKPI Pi}
+<<domain HACKPI Pi>>=
+)abbrev domain HACKPI Pi
+++ Expressions in %pi only
+++ Author: Manuel Bronstein
+++ Description:
+++ Symbolic fractions in %pi with integer coefficients;
+++ The point for using Pi as the default domain for those fractions
+++ is that Pi is coercible to the float types, and not Expression.
+++ Date Created: 21 Feb 1990
+++ Date Last Updated: 12 Mai 1992
+Pi(): Exports == Implementation where
+ PZ ==> Polynomial Integer
+ UP ==> SparseUnivariatePolynomial Integer
+ RF ==> Fraction UP
+
+ Exports ==> Join(Field, CharacteristicZero, RetractableTo Integer,
+ RetractableTo Fraction Integer, RealConstant,
+ CoercibleTo DoubleFloat, CoercibleTo Float,
+ ConvertibleTo RF, ConvertibleTo InputForm) with
+ pi: () -> % ++ pi() returns the symbolic %pi.
+ Implementation ==> RF add
+ Rep := RF
+
+ sympi := "%pi"::Symbol
+
+ p2sf: UP -> DoubleFloat
+ p2f : UP -> Float
+ p2o : UP -> OutputForm
+ p2i : UP -> InputForm
+ p2p: UP -> PZ
+
+ pi() == (monomial(1, 1)$UP :: RF) pretend %
+ convert(x:%):RF == x pretend RF
+ convert(x:%):Float == x::Float
+ convert(x:%):DoubleFloat == x::DoubleFloat
+ coerce(x:%):DoubleFloat == p2sf(numer x) / p2sf(denom x)
+ coerce(x:%):Float == p2f(numer x) / p2f(denom x)
+ p2o p == outputForm(p, sympi::OutputForm)
+ p2i p == convert p2p p
+
+ p2p p ==
+ ans:PZ := 0
+ while p ^= 0 repeat
+ ans := ans + monomial(leadingCoefficient(p)::PZ, sympi, degree p)
+ p := reductum p
+ ans
+
+ coerce(x:%):OutputForm ==
+ (r := retractIfCan(x)@Union(UP, "failed")) case UP => p2o(r::UP)
+ p2o(numer x) / p2o(denom x)
+
+ convert(x:%):InputForm ==
+ (r := retractIfCan(x)@Union(UP, "failed")) case UP => p2i(r::UP)
+ p2i(numer x) / p2i(denom x)
+
+ p2sf p ==
+ map(#1::DoubleFloat, p)$SparseUnivariatePolynomialFunctions2(
+ Integer, DoubleFloat) (pi()$DoubleFloat)
+
+ p2f p ==
+ map(#1::Float, p)$SparseUnivariatePolynomialFunctions2(
+ Integer, Float) (pi()$Float)
+
+@
+\section{package PICOERCE PiCoercions}
+<<package PICOERCE PiCoercions>>=
+)abbrev package PICOERCE PiCoercions
+++ Coercions from %pi to symbolic or numeric domains
+++ Author: Manuel Bronstein
+++ Description:
+++ Provides a coercion from the symbolic fractions in %pi with
+++ integer coefficients to any Expression type.
+++ Date Created: 21 Feb 1990
+++ Date Last Updated: 21 Feb 1990
+PiCoercions(R:Join(OrderedSet, IntegralDomain)): with
+ coerce: Pi -> Expression R
+ ++ coerce(f) returns f as an Expression(R).
+ == add
+ p2e: SparseUnivariatePolynomial Integer -> Expression R
+
+ coerce(x:Pi):Expression(R) ==
+ f := convert(x)@Fraction(SparseUnivariatePolynomial Integer)
+ p2e(numer f) / p2e(denom f)
+
+ p2e p ==
+ map(#1::Expression(R), p)$SparseUnivariatePolynomialFunctions2(
+ Integer, Expression R) (pi()$Expression(R))
+
+@
+\section{License}
+<<license>>=
+--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
+--All rights reserved.
+--
+--Redistribution and use in source and binary forms, with or without
+--modification, are permitted provided that the following conditions are
+--met:
+--
+-- - Redistributions of source code must retain the above copyright
+-- notice, this list of conditions and the following disclaimer.
+--
+-- - Redistributions in binary form must reproduce the above copyright
+-- notice, this list of conditions and the following disclaimer in
+-- the documentation and/or other materials provided with the
+-- distribution.
+--
+-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
+-- names of its contributors may be used to endorse or promote products
+-- derived from this software without specific prior written permission.
+--
+--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
+--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
+--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
+--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
+--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+@
+<<*>>=
+<<license>>
+
+-- SPAD files for the functional world should be compiled in the
+-- following order:
+--
+-- op kl fspace algfunc elemntry combfunc EXPR
+
+<<domain EXPR Expression>>
+<<package PAN2EXPR PolynomialAN2Expression>>
+<<package EXPR2 ExpressionFunctions2>>
+<<package PMPREDFS FunctionSpaceAttachPredicates>>
+<<package PMASSFS FunctionSpaceAssertions>>
+<<package PMPRED AttachPredicates>>
+<<package PMASS PatternMatchAssertions>>
+<<domain HACKPI Pi>>
+<<package PICOERCE PiCoercions>>
+@
+\eject
+\begin{thebibliography}{99}
+\bibitem{1} nothing
+\end{thebibliography}
+\end{document}