aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/cycles.spad.pamphlet
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-04-25 22:10:18 +0000
committerdos-reis <gdr@axiomatics.org>2010-04-25 22:10:18 +0000
commitc79e40703ada1ff91b7e057b25d4ae1c4199770a (patch)
treee5fd98849be6f127a2c0cd267fdd498ec53c3f90 /src/algebra/cycles.spad.pamphlet
parent2e76a77847facaa29b9c0f7c26ea2ba511dc285e (diff)
downloadopen-axiom-c79e40703ada1ff91b7e057b25d4ae1c4199770a.tar.gz
* algebra/partperm.spad.pamphlet (PartitionsAndPermutations): Move
partitions to domain Partitions. * algebra/cycles.spad.pamphlet (CycleIndicators): User partitions from Partition. Tidy.
Diffstat (limited to 'src/algebra/cycles.spad.pamphlet')
-rw-r--r--src/algebra/cycles.spad.pamphlet22
1 files changed, 11 insertions, 11 deletions
diff --git a/src/algebra/cycles.spad.pamphlet b/src/algebra/cycles.spad.pamphlet
index c2941dd3..b8dea37f 100644
--- a/src/algebra/cycles.spad.pamphlet
+++ b/src/algebra/cycles.spad.pamphlet
@@ -94,29 +94,29 @@ CycleIndicators: Exports == Implementation where
++ expressed in terms of power sum symmetric functions.
Implementation ==> add
- import PartitionsAndPermutations
import IntegerNumberTheoryFunctions
+ import Partition
trm: PTN -> SPOL RN
trm pt == monomial(inv(pdct(pt) :: RN),pt)
- list: Stream L PI -> L L PI
+ list: Stream PTN -> L PTN
list st == entries complete st
complete i ==
i=0 => 1
- +/[trm partition pt for pt in list partitions i]
+ +/[trm pt for pt in list partitions i]
- even?: L PI -> B
- even? li == even?( #([i for i in li | even? i]))
+ even?: PTN -> B
+ even? p == even?( #([i for i in parts p | even? i]))
alternating i ==
- 2 * _+/[trm partition li for li in list partitions i | even? li]
+ 2 * _+/[trm p for p in list partitions i | even? p]
elementary i ==
i=0 => 1
- +/[(spol := trm partition pt; even? pt => spol; -spol)
+ +/[(spol := trm pt; even? pt => spol; -spol)
for pt in list partitions i]
divisors: I -> L I
@@ -142,10 +142,10 @@ CycleIndicators: Exports == Implementation where
odd? n => (1/2) * cyclic n + (1/2) * ss(2,k) * powerSum 1
(1/2) * cyclic n + (1/4) * ss(2,k) + (1/4) * ss(2,k-1) * ss(1,2)
- trm2: L PI -> SPOL RN
+ trm2: PTN -> SPOL RN
trm2 li ==
- lli := powers(partition li)$PTN
- xx := 1/(pdct partition li)
+ lli := powers( li)$PTN
+ xx := 1/(pdct li)
prod : SPOL RN := 1
for ll in lli repeat
ll0 := first ll; ll1 := second ll
@@ -161,7 +161,7 @@ CycleIndicators: Exports == Implementation where
prod := c * prod2 * prod
xx * prod
- graphs n == +/[trm2 li for li in list(partitions n)]
+ graphs n == +/[trm2 p for p in list(partitions n)]
cupp: (PTN,SPOL RN) -> SPOL RN
cupp(pt,spol) ==