diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/asp.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/asp.spad.pamphlet')
-rw-r--r-- | src/algebra/asp.spad.pamphlet | 4295 |
1 files changed, 4295 insertions, 0 deletions
diff --git a/src/algebra/asp.spad.pamphlet b/src/algebra/asp.spad.pamphlet new file mode 100644 index 00000000..7899fb39 --- /dev/null +++ b/src/algebra/asp.spad.pamphlet @@ -0,0 +1,4295 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra asp.spad} +\author{Mike Dewar, Grant Keady, Godfrey Nolan} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{domain ASP1 Asp1} +<<domain ASP1 Asp1>>= +)abbrev domain ASP1 Asp1 +++ Author: Mike Dewar, Grant Keady, Godfrey Nolan +++ Date Created: Mar 1993 +++ Date Last Updated: 18 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranFunctionCategory, FortranProgramCategory. +++ Description: +++\spadtype{Asp1} produces Fortran for Type 1 ASPs, needed for various +++NAG routines. Type 1 ASPs take a univariate expression (in the symbol +++X) and turn it into a Fortran Function like the following: +++\begin{verbatim} +++ DOUBLE PRECISION FUNCTION F(X) +++ DOUBLE PRECISION X +++ F=DSIN(X) +++ RETURN +++ END +++\end{verbatim} + + +Asp1(name): Exports == Implementation where + name : Symbol + + FEXPR ==> FortranExpression + FST ==> FortranScalarType + FT ==> FortranType + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + + Exports ==> FortranFunctionCategory with + coerce : FEXPR(['X],[],MachineFloat) -> $ + ++coerce(f) takes an object from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns it into an ASP. + + Implementation ==> add + + -- Build Symbol Table for Rep + syms : SYMTAB := empty()$SYMTAB + declare!(X,fortranReal()$FT,syms)$SYMTAB + real : FST := "real"::FST + + Rep := FortranProgram(name,[real]$Union(fst:FST,void:"void"),[X],syms) + + retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ + retractIfCan(u:FRAC POLY INT):Union($,"failed") == + foo : Union(FEXPR(['X],[],MachineFloat),"failed") + foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) + foo case "failed" => "failed" + foo::FEXPR(['X],[],MachineFloat)::$ + + retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ + retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") == + foo : Union(FEXPR(['X],[],MachineFloat),"failed") + foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) + foo case "failed" => "failed" + foo::FEXPR(['X],[],MachineFloat)::$ + + retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ + retractIfCan(u:EXPR FLOAT):Union($,"failed") == + foo : Union(FEXPR(['X],[],MachineFloat),"failed") + foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) + foo case "failed" => "failed" + foo::FEXPR(['X],[],MachineFloat)::$ + + retract(u:EXPR INT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ + retractIfCan(u:EXPR INT):Union($,"failed") == + foo : Union(FEXPR(['X],[],MachineFloat),"failed") + foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) + foo case "failed" => "failed" + foo::FEXPR(['X],[],MachineFloat)::$ + + retract(u:POLY FLOAT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ + retractIfCan(u:POLY FLOAT):Union($,"failed") == + foo : Union(FEXPR(['X],[],MachineFloat),"failed") + foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) + foo case "failed" => "failed" + foo::FEXPR(['X],[],MachineFloat)::$ + + retract(u:POLY INT):$ == (retract(u)@FEXPR(['X],[],MachineFloat))::$ + retractIfCan(u:POLY INT):Union($,"failed") == + foo : Union(FEXPR(['X],[],MachineFloat),"failed") + foo := retractIfCan(u)$FEXPR(['X],[],MachineFloat) + foo case "failed" => "failed" + foo::FEXPR(['X],[],MachineFloat)::$ + + coerce(u:FEXPR(['X],[],MachineFloat)):$ == + coerce((u::Expression(MachineFloat))$FEXPR(['X],[],MachineFloat))$Rep + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FortranCode):$ == coerce(c)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP10 Asp10} +<<domain ASP10 Asp10>>= +)abbrev domain ASP10 Asp10 +++ Author: Mike Dewar and Godfrey Nolan +++ Date Created: Mar 1993 +++ Date Last Updated: 18 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{ASP10} produces Fortran for Type 10 ASPs, needed for NAG routine +++\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions, for example: +++\begin{verbatim} +++ SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) +++ DOUBLE PRECISION ELAM,P,Q,X,DQDL +++ INTEGER JINT +++ P=1.0D0 +++ Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) +++ DQDL=1.0D0 +++ RETURN +++ END +++\end{verbatim} + +Asp10(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + SYMTAB ==> SymbolTable + EXF ==> Expression Float + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FEXPR ==> FortranExpression(['JINT,'X,'ELAM],[],MFLOAT) + MFLOAT ==> MachineFloat + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + VF2 ==> VectorFunctions2 + + Exports ==> FortranVectorFunctionCategory with + coerce : Vector FEXPR -> % + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + real : FST := "real"::FST + syms : SYMTAB := empty()$SYMTAB + declare!(P,fortranReal()$FT,syms)$SYMTAB + declare!(Q,fortranReal()$FT,syms)$SYMTAB + declare!(DQDL,fortranReal()$FT,syms)$SYMTAB + declare!(X,fortranReal()$FT,syms)$SYMTAB + declare!(ELAM,fortranReal()$FT,syms)$SYMTAB + declare!(JINT,fortranInteger()$FT,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$Union(fst:FST,void:"void"), + [P,Q,DQDL,X,ELAM,JINT],syms) + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + coerce(c:FortranCode):% == coerce(c)$Rep + + coerce(r:RSFC):% == coerce(r)$Rep + + coerce(c:List FortranCode):% == coerce(c)$Rep + + -- To help the poor old compiler! + localAssign(s:Symbol,u:Expression MFLOAT):FortranCode == + assign(s,u)$FortranCode + + coerce(u:Vector FEXPR):% == + import Vector FEXPR + not (#u = 3) => error "Incorrect Dimension For Vector" + ([localAssign(P,elt(u,1)::Expression MFLOAT),_ + localAssign(Q,elt(u,2)::Expression MFLOAT),_ + localAssign(DQDL,elt(u,3)::Expression MFLOAT),_ + returns()$FortranCode ]$List(FortranCode))::Rep + + coerce(u:%):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP12 Asp12} +<<domain ASP12 Asp12>>= +)abbrev domain ASP12 Asp12 +++ Author: Mike Dewar and Godfrey Nolan +++ Date Created: Oct 1993 +++ Date Last Updated: 18 March 1994 +++ 21 June 1994 Changed print to printStatement +++ Related Constructors: +++ Description: +++\spadtype{Asp12} produces Fortran for Type 12 ASPs, needed for NAG routine +++\axiomOpFrom{d02kef}{d02Package} etc., for example: +++\begin{verbatim} +++ SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) +++ DOUBLE PRECISION ELAM,FINFO(15) +++ INTEGER MAXIT,IFLAG +++ IF(MAXIT.EQ.-1)THEN +++ PRINT*,"Output from Monit" +++ ENDIF +++ PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) +++ RETURN +++ END +++\end{verbatim} +Asp12(name): Exports == Implementation where + name : Symbol + + O ==> OutputForm + S ==> Symbol + FST ==> FortranScalarType + FT ==> FortranType + FC ==> FortranCode + SYMTAB ==> SymbolTable + EXI ==> Expression Integer + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + U ==> Union(I: Expression Integer,F: Expression Float,_ + CF: Expression Complex Float,switch:Switch) + UFST ==> Union(fst:FST,void:"void") + + Exports ==> FortranProgramCategory with + outputAsFortran:() -> Void + ++outputAsFortran() generates the default code for \spadtype{ASP12}. + + Implementation ==> add + + import FC + import Switch + + real : FST := "real"::FST + syms : SYMTAB := empty()$SYMTAB + declare!(MAXIT,fortranInteger()$FT,syms)$SYMTAB + declare!(IFLAG,fortranInteger()$FT,syms)$SYMTAB + declare!(ELAM,fortranReal()$FT,syms)$SYMTAB + fType : FT := construct([real]$UFST,["15"::Symbol],false)$FT + declare!(FINFO,fType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST,[MAXIT,IFLAG,ELAM,FINFO],syms) + + -- eqn : O := (I::O)=(1@Integer::EXI::O) + code:=([cond(EQ([MAXIT@S::EXI]$U,[-1::EXI]$U), + printStatement(["_"Output from Monit_""::O])), + printStatement([MAXIT::O,IFLAG::O,ELAM::O,subscript("(FINFO"::S,[I::O])::O,"I=1"::S::O,"4)"::S::O]), -- YUCK! + returns()]$List(FortranCode))::Rep + + coerce(u:%):OutputForm == coerce(u)$Rep + + outputAsFortran(u:%):Void == outputAsFortran(u)$Rep + outputAsFortran():Void == outputAsFortran(code)$Rep + +@ +\section{domain ASP19 Asp19} +<<domain ASP19 Asp19>>= +)abbrev domain ASP19 Asp19 +++ Author: Mike Dewar, Godfrey Nolan, Grant Keady +++ Date Created: Mar 1993 +++ Date Last Updated: 18 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp19} produces Fortran for Type 19 ASPs, evaluating a set of +++functions and their jacobian at a given point, for example: +++\begin{verbatim} +++ SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) +++ DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) +++ INTEGER M,N,LJC +++ INTEGER I,J +++ DO 25003 I=1,LJC +++ DO 25004 J=1,N +++ FJACC(I,J)=0.0D0 +++25004 CONTINUE +++25003 CONTINUE +++ FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( +++ &XC(3)+15.0D0*XC(2)) +++ FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( +++ &XC(3)+7.0D0*XC(2)) +++ FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 +++ &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) +++ FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( +++ &XC(3)+3.0D0*XC(2)) +++ FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* +++ &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) +++ FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 +++ &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) +++ FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* +++ &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) +++ FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ +++ &XC(2)) +++ FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 +++ &286D0)/(XC(3)+XC(2)) +++ FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 +++ &6667D0)/(XC(3)+XC(2)) +++ FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) +++ &+XC(2)) +++ FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) +++ &+XC(2)) +++ FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 +++ &3333D0)/(XC(3)+XC(2)) +++ FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X +++ &C(2)) +++ FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 +++ &)+XC(2)) +++ FJACC(1,1)=1.0D0 +++ FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) +++ FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) +++ FJACC(2,1)=1.0D0 +++ FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) +++ FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) +++ FJACC(3,1)=1.0D0 +++ FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( +++ &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) +++ &**2) +++ FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 +++ &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) +++ FJACC(4,1)=1.0D0 +++ FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) +++ FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) +++ FJACC(5,1)=1.0D0 +++ FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 +++ &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) +++ FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 +++ &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) +++ FJACC(6,1)=1.0D0 +++ FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( +++ &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) +++ &**2) +++ FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 +++ &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) +++ FJACC(7,1)=1.0D0 +++ FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( +++ &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) +++ &**2) +++ FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 +++ &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) +++ FJACC(8,1)=1.0D0 +++ FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) +++ FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) +++ FJACC(9,1)=1.0D0 +++ FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* +++ &*2) +++ FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* +++ &*2) +++ FJACC(10,1)=1.0D0 +++ FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) +++ &**2) +++ FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) +++ &**2) +++ FJACC(11,1)=1.0D0 +++ FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) +++ FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) +++ FJACC(12,1)=1.0D0 +++ FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) +++ FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) +++ FJACC(13,1)=1.0D0 +++ FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) +++ &**2) +++ FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) +++ &**2) +++ FJACC(14,1)=1.0D0 +++ FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) +++ FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) +++ FJACC(15,1)=1.0D0 +++ FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) +++ FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) +++ RETURN +++ END +++\end{verbatim} + +Asp19(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + FC ==> FortranCode + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FC)) + FSTU ==> Union(fst:FST,void:"void") + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + MFLOAT ==> MachineFloat + VEC ==> Vector + VF2 ==> VectorFunctions2 + MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR,EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT) + FEXPR ==> FortranExpression([],['XC],MFLOAT) + S ==> Symbol + + Exports ==> FortranVectorFunctionCategory with + coerce : VEC FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + real : FSTU := ["real"::FST]$FSTU + syms : SYMTAB := empty()$SYMTAB + declare!(M,fortranInteger()$FT,syms)$SYMTAB + declare!(N,fortranInteger()$FT,syms)$SYMTAB + declare!(LJC,fortranInteger()$FT,syms)$SYMTAB + xcType : FT := construct(real,[N],false)$FT + declare!(XC,xcType,syms)$SYMTAB + fveccType : FT := construct(real,[M],false)$FT + declare!(FVECC,fveccType,syms)$SYMTAB + fjaccType : FT := construct(real,[LJC,N],false)$FT + declare!(FJACC,fjaccType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$FSTU,[M,N,XC,FVECC,FJACC,LJC],syms) + + coerce(c:List FC):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FC):$ == coerce(c)$Rep + + -- Take a symbol, pull of the script and turn it into an integer!! + o2int(u:S):Integer == + o : OutputForm := first elt(scripts(u)$S,sub) + o pretend Integer + + -- To help the poor old compiler! + fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR + + localAssign1(s:S,j:Matrix FEXPR):FC == + j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2 + assign(s,j')$FC + + localAssign2(s:S,j:VEC FEXPR):FC == + j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) + assign(s,j')$FC + + coerce(u:VEC FEXPR):$ == + -- First zero the Jacobian matrix in case we miss some derivatives which + -- are zero. + import POLY INT + seg1 : Segment (POLY INT) := segment(1::(POLY INT),LJC@S::(POLY INT)) + seg2 : Segment (POLY INT) := segment(1::(POLY INT),N@S::(POLY INT)) + s1 : SegmentBinding POLY INT := equation(I@S,seg1) + s2 : SegmentBinding POLY INT := equation(J@S,seg2) + as : FC := assign(FJACC,[I@S::(POLY INT),J@S::(POLY INT)],0.0::EXPR FLOAT) + clear : FC := forLoop(s1,forLoop(s2,as)) + j:Integer + x:S := XC::S + pu:List(S) := [] + -- Work out which variables appear in the expressions + for e in entries(u) repeat + pu := setUnion(pu,variables(e)$FEXPR) + scriptList : List Integer := map(o2int,pu)$ListFunctions2(S,Integer) + -- This should be the maximum XC_n which occurs (there may be others + -- which don't): + n:Integer := reduce(max,scriptList)$List(Integer) + p:List(S) := [] + for j in 1..n repeat p:= cons(subscript(x,[j::OutputForm])$S,p) + p:= reverse(p) + jac:Matrix(FEXPR) := _ + jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S)) + c1:FC := localAssign2(FVECC,u) + c2:FC := localAssign1(FJACC,jac) + [clear,c1,c2,returns()]$List(FC)::$ + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + +@ +\section{domain ASP20 Asp20} +<<domain ASP20 Asp20>>= +)abbrev domain ASP20 Asp20 +++ Author: Mike Dewar and Godfrey Nolan and Grant Keady +++ Date Created: Dec 1993 +++ Date Last Updated: 21 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp20} produces Fortran for Type 20 ASPs, for example: +++\begin{verbatim} +++ SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) +++ DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) +++ INTEGER JTHCOL,N,NROWH,NCOLH +++ HX(1)=2.0D0*X(1) +++ HX(2)=2.0D0*X(2) +++ HX(3)=2.0D0*X(4)+2.0D0*X(3) +++ HX(4)=2.0D0*X(4)+2.0D0*X(3) +++ HX(5)=2.0D0*X(5) +++ HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) +++ HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) +++ RETURN +++ END +++\end{verbatim} + +Asp20(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + SYMTAB ==> SymbolTable + PI ==> PositiveInteger + UFST ==> Union(fst:FST,void:"void") + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + MAT ==> Matrix + VF2 ==> VectorFunctions2 + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression([],['X,'HESS],MFLOAT) + O ==> OutputForm + M2 ==> MatrixCategoryFunctions2 + MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT, + MAT FRAC POLY INT,FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT, + MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT, + FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT, + MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT, + FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT, + MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + + + Exports ==> FortranMatrixFunctionCategory with + coerce: MAT FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + real : UFST := ["real"::FST]$UFST + syms : SYMTAB := empty() + declare!(N,fortranInteger(),syms)$SYMTAB + declare!(NROWH,fortranInteger(),syms)$SYMTAB + declare!(NCOLH,fortranInteger(),syms)$SYMTAB + declare!(JTHCOL,fortranInteger(),syms)$SYMTAB + hessType : FT := construct(real,[NROWH,NCOLH],false)$FT + declare!(HESS,hessType,syms)$SYMTAB + xType : FT := construct(real,[N],false)$FT + declare!(X,xType,syms)$SYMTAB + declare!(HX,xType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST, + [N,NROWH,NCOLH,JTHCOL,HESS,X,HX],syms) + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FortranCode):$ == coerce(c)$Rep + + -- To help the poor old compiler! + fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR + + localAssign(s:Symbol,j:VEC FEXPR):FortranCode == + j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) + assign(s,j')$FortranCode + + coerce(u:MAT FEXPR):$ == + j:Integer + x:Symbol := X::Symbol + n := nrows(u)::PI + p:VEC FEXPR := [retract(subscript(x,[j::O])$Symbol)@FEXPR for j in 1..n] + prod:VEC FEXPR := u*p + ([localAssign(HX,prod),returns()$FortranCode]$List(FortranCode))::$ + + retract(u:MAT FRAC POLY INT):$ == + v : MAT FEXPR := map(retract,u)$MF2a + v::$ + + retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT FRAC POLY FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2b + v::$ + + retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT EXPR INT):$ == + v : MAT FEXPR := map(retract,u)$MF2e + v::$ + + retractIfCan(u:MAT EXPR INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT EXPR FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2f + v::$ + + retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT POLY INT):$ == + v : MAT FEXPR := map(retract,u)$MF2c + v::$ + + retractIfCan(u:MAT POLY INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT POLY FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2d + v::$ + + retractIfCan(u:MAT POLY FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + coerce(u:$):O == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP24 Asp24} +<<domain ASP24 Asp24>>= +)abbrev domain ASP24 Asp24 +++ Author: Mike Dewar, Grant Keady and Godfrey Nolan +++ Date Created: Mar 1993 +++ Date Last Updated: 21 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a +++multivariate function at a point (needed for NAG routine \axiomOpFrom{e04jaf}{e04Package}), for example: +++\begin{verbatim} +++ SUBROUTINE FUNCT1(N,XC,FC) +++ DOUBLE PRECISION FC,XC(N) +++ INTEGER N +++ FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 +++ &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X +++ &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ +++ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( +++ &2)+10.0D0*XC(1)**4+XC(1)**2 +++ RETURN +++ END +++\end{verbatim} + +Asp24(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FSTU ==> Union(fst:FST,void:"void") + FEXPR ==> FortranExpression([],['XC],MachineFloat) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + + Exports ==> FortranFunctionCategory with + coerce : FEXPR -> $ + ++ coerce(f) takes an object from the appropriate instantiation of + ++ \spadtype{FortranExpression} and turns it into an ASP. + + + Implementation ==> add + + + real : FSTU := ["real"::FST]$FSTU + syms : SYMTAB := empty() + declare!(N,fortranInteger(),syms)$SYMTAB + xcType : FT := construct(real,[N::Symbol],false)$FT + declare!(XC,xcType,syms)$SYMTAB + declare!(FC,fortranReal(),syms)$SYMTAB + Rep := FortranProgram(name,["void"]$FSTU,[N,XC,FC],syms) + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FortranCode):$ == coerce(c)$Rep + + coerce(u:FEXPR):$ == + coerce(assign(FC,u::Expression(MachineFloat))$FortranCode)$Rep + + retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:FRAC POLY INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:EXPR FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:EXPR INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:POLY FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:POLY INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:POLY INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP27 Asp27} +<<domain ASP27 Asp27>>= +)abbrev domain ASP27 Asp27 +++ Author: Mike Dewar and Godfrey Nolan +++ Date Created: Nov 1993 +++ Date Last Updated: 27 April 1994 +++ 6 October 1994 +++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp27} produces Fortran for Type 27 ASPs, needed for NAG routine +++\axiomOpFrom{f02fjf}{f02Package} ,for example: +++\begin{verbatim} +++ FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) +++ DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) +++ INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) +++ DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 +++ &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( +++ &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 +++ &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( +++ &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) +++ &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) +++ &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. +++ &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 +++ &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( +++ &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) +++ RETURN +++ END +++\end{verbatim} + +Asp27(name): Exports == Implementation where + name : Symbol + + O ==> OutputForm + FST ==> FortranScalarType + FT ==> FortranType + SYMTAB ==> SymbolTable + UFST ==> Union(fst:FST,void:"void") + FC ==> FortranCode + PI ==> PositiveInteger + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + EXPR ==> Expression + MAT ==> Matrix + MFLOAT ==> MachineFloat + + + + Exports == FortranMatrixCategory + + Implementation == add + + + real : UFST := ["real"::FST]$UFST + integer : UFST := ["integer"::FST]$UFST + syms : SYMTAB := empty()$SYMTAB + declare!(IFLAG,fortranInteger(),syms)$SYMTAB + declare!(N,fortranInteger(),syms)$SYMTAB + declare!(LRWORK,fortranInteger(),syms)$SYMTAB + declare!(LIWORK,fortranInteger(),syms)$SYMTAB + zType : FT := construct(real,[N],false)$FT + declare!(Z,zType,syms)$SYMTAB + declare!(W,zType,syms)$SYMTAB + rType : FT := construct(real,[LRWORK],false)$FT + declare!(RWORK,rType,syms)$SYMTAB + iType : FT := construct(integer,[LIWORK],false)$FT + declare!(IWORK,iType,syms)$SYMTAB + Rep := FortranProgram(name,real, + [IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK],syms) + + -- To help the poor old compiler! + localCoerce(u:Symbol):EXPR(MFLOAT) == coerce(u)$EXPR(MFLOAT) + + coerce (u:MAT MFLOAT):$ == + Ws: Symbol := W + Zs: Symbol := Z + code : List FC + l:EXPR MFLOAT := "+"/ _ + [("+"/[localCoerce(elt(Ws,[j::O])$Symbol) * u(j,i)_ + for j in 1..nrows(u)::PI])_ + *localCoerce(elt(Zs,[i::O])$Symbol) for i in 1..ncols(u)::PI] + c := assign(name,l)$FC + code := [c,returns()]$List(FC) + code::$ + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FortranCode):$ == coerce(c)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP28 Asp28} +<<domain ASP28 Asp28>>= +)abbrev domain ASP28 Asp28 +++ Author: Mike Dewar +++ Date Created: 21 March 1994 +++ Date Last Updated: 28 April 1994 +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp28} produces Fortran for Type 28 ASPs, used in NAG routine +++\axiomOpFrom{f02fjf}{f02Package}, for example: +++\begin{verbatim} +++ SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) +++ DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) +++ INTEGER N,LIWORK,IFLAG,LRWORK +++ W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 +++ &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 +++ &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 +++ &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( +++ &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. +++ &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 +++ &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z +++ &(1) +++ W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 +++ &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 +++ &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D +++ &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) +++ &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 +++ &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 +++ &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 +++ &)) +++ W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 +++ &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 +++ &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 +++ &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D +++ &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- +++ &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 +++ &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 +++ &D0*Z(1)) +++ W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. +++ &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 +++ &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 +++ &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z +++ &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 +++ &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 +++ &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* +++ &Z(1) +++ W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( +++ &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 +++ &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 +++ &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 +++ &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) +++ &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 +++ &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 +++ &6D0*Z(1) +++ W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 +++ &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 +++ &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 +++ &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( +++ &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 +++ &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 +++ &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) +++ W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 +++ &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 +++ &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 +++ &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( +++ &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 +++ &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 +++ &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 +++ &) +++ W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 +++ &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 +++ &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 +++ &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) +++ &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 +++ &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 +++ &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( +++ &1) +++ W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- +++ &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 +++ &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 +++ &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 +++ &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 +++ &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 +++ &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( +++ &1) +++ W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 +++ &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 +++ &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 +++ &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 +++ &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 +++ &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 +++ &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( +++ &1) +++ W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 +++ &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 +++ &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D +++ &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) +++ &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 +++ &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 +++ &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) +++ W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- +++ &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 +++ &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 +++ &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 +++ &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. +++ &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 +++ &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 +++ &75D0*Z(1) +++ W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( +++ &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 +++ &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 +++ &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( +++ &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 +++ &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 +++ &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 +++ &*Z(1) +++ W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) +++ &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 +++ &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 +++ &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D +++ &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 +++ &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 +++ &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 +++ &02D0*Z(1) +++ W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 +++ &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 +++ &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 +++ &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D +++ &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. +++ &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 +++ &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z +++ &(1) +++ W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. +++ &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 +++ &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 +++ &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z +++ &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 +++ &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 +++ &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* +++ &Z(1) +++ RETURN +++ END +++\end{verbatim} + +Asp28(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + SYMTAB ==> SymbolTable + FC ==> FortranCode + PI ==> PositiveInteger + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + EXPR ==> Expression + MFLOAT ==> MachineFloat + VEC ==> Vector + UFST ==> Union(fst:FST,void:"void") + MAT ==> Matrix + + Exports == FortranMatrixCategory + + Implementation == add + + + real : UFST := ["real"::FST]$UFST + syms : SYMTAB := empty() + declare!(IFLAG,fortranInteger(),syms)$SYMTAB + declare!(N,fortranInteger(),syms)$SYMTAB + declare!(LRWORK,fortranInteger(),syms)$SYMTAB + declare!(LIWORK,fortranInteger(),syms)$SYMTAB + xType : FT := construct(real,[N],false)$FT + declare!(Z,xType,syms)$SYMTAB + declare!(W,xType,syms)$SYMTAB + rType : FT := construct(real,[LRWORK],false)$FT + declare!(RWORK,rType,syms)$SYMTAB + iType : FT := construct(real,[LIWORK],false)$FT + declare!(IWORK,rType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST, + [IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK],syms) + + -- To help the poor old compiler! + localCoerce(u:Symbol):EXPR(MFLOAT) == coerce(u)$EXPR(MFLOAT) + + coerce (u:MAT MFLOAT):$ == + Zs: Symbol := Z + code : List FC + r: List EXPR MFLOAT + r := ["+"/[u(j,i)*localCoerce(elt(Zs,[i::OutputForm])$Symbol)_ + for i in 1..ncols(u)$MAT(MFLOAT)::PI]_ + for j in 1..nrows(u)$MAT(MFLOAT)::PI] + code := [assign(W@Symbol,vector(r)$VEC(EXPR MFLOAT)),returns()]$List(FC) + code::$ + + coerce(c:FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP29 Asp29} +<<domain ASP29 Asp29>>= +)abbrev domain ASP29 Asp29 +++ Author: Mike Dewar and Godfrey Nolan +++ Date Created: Nov 1993 +++ Date Last Updated: 18 March 1994 +++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp29} produces Fortran for Type 29 ASPs, needed for NAG routine +++\axiomOpFrom{f02fjf}{f02Package}, for example: +++\begin{verbatim} +++ SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) +++ DOUBLE PRECISION D(K),F(K) +++ INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE +++ CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) +++ RETURN +++ END +++\end{verbatim} + +Asp29(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + FSTU ==> Union(fst:FST,void:"void") + SYMTAB ==> SymbolTable + FC ==> FortranCode + PI ==> PositiveInteger + EXF ==> Expression Float + EXI ==> Expression Integer + VEF ==> Vector Expression Float + VEI ==> Vector Expression Integer + MEI ==> Matrix Expression Integer + MEF ==> Matrix Expression Float + UEXPR ==> Union(I: Expression Integer,F: Expression Float,_ + CF: Expression Complex Float) + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + + Exports == FortranProgramCategory with + outputAsFortran:() -> Void + ++outputAsFortran() generates the default code for \spadtype{ASP29}. + + + Implementation == add + + import FST + import FT + import FC + import SYMTAB + + real : FSTU := ["real"::FST]$FSTU + integer : FSTU := ["integer"::FST]$FSTU + syms : SYMTAB := empty() + declare!(ISTATE,fortranInteger(),syms) + declare!(NEXTIT,fortranInteger(),syms) + declare!(NEVALS,fortranInteger(),syms) + declare!(NVECS,fortranInteger(),syms) + declare!(K,fortranInteger(),syms) + kType : FT := construct(real,[K],false)$FT + declare!(F,kType,syms) + declare!(D,kType,syms) + Rep := FortranProgram(name,["void"]$FSTU, + [ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D],syms) + + + outputAsFortran():Void == + callOne := call("F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D)") + code : List FC := [callOne,returns()]$List(FC) + outputAsFortran(coerce(code)@Rep)$Rep + +@ +\section{domain ASP30 Asp30} +<<domain ASP30 Asp30>>= +)abbrev domain ASP30 Asp30 +++ Author: Mike Dewar and Godfrey Nolan +++ Date Created: Nov 1993 +++ Date Last Updated: 28 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp30} produces Fortran for Type 30 ASPs, needed for NAG routine +++\axiomOpFrom{f04qaf}{f04Package}, for example: +++\begin{verbatim} +++ SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) +++ DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) +++ INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE +++ DOUBLE PRECISION A(5,5) +++ EXTERNAL F06PAF +++ A(1,1)=1.0D0 +++ A(1,2)=0.0D0 +++ A(1,3)=0.0D0 +++ A(1,4)=-1.0D0 +++ A(1,5)=0.0D0 +++ A(2,1)=0.0D0 +++ A(2,2)=1.0D0 +++ A(2,3)=0.0D0 +++ A(2,4)=0.0D0 +++ A(2,5)=-1.0D0 +++ A(3,1)=0.0D0 +++ A(3,2)=0.0D0 +++ A(3,3)=1.0D0 +++ A(3,4)=-1.0D0 +++ A(3,5)=0.0D0 +++ A(4,1)=-1.0D0 +++ A(4,2)=0.0D0 +++ A(4,3)=-1.0D0 +++ A(4,4)=4.0D0 +++ A(4,5)=-1.0D0 +++ A(5,1)=0.0D0 +++ A(5,2)=-1.0D0 +++ A(5,3)=0.0D0 +++ A(5,4)=-1.0D0 +++ A(5,5)=4.0D0 +++ IF(MODE.EQ.1)THEN +++ CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) +++ ELSEIF(MODE.EQ.2)THEN +++ CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) +++ ENDIF +++ RETURN +++ END +++\end{verbatim} + +Asp30(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + SYMTAB ==> SymbolTable + FC ==> FortranCode + PI ==> PositiveInteger + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + UFST ==> Union(fst:FST,void:"void") + MAT ==> Matrix + MFLOAT ==> MachineFloat + EXI ==> Expression Integer + UEXPR ==> Union(I:Expression Integer,F:Expression Float,_ + CF:Expression Complex Float,switch:Switch) + S ==> Symbol + + Exports == FortranMatrixCategory + + Implementation == add + + import FC + import FT + import Switch + + real : UFST := ["real"::FST]$UFST + integer : UFST := ["integer"::FST]$UFST + syms : SYMTAB := empty()$SYMTAB + declare!(MODE,fortranInteger()$FT,syms)$SYMTAB + declare!(M,fortranInteger()$FT,syms)$SYMTAB + declare!(N,fortranInteger()$FT,syms)$SYMTAB + declare!(LRWORK,fortranInteger()$FT,syms)$SYMTAB + declare!(LIWORK,fortranInteger()$FT,syms)$SYMTAB + xType : FT := construct(real,[N],false)$FT + declare!(X,xType,syms)$SYMTAB + yType : FT := construct(real,[M],false)$FT + declare!(Y,yType,syms)$SYMTAB + rType : FT := construct(real,[LRWORK],false)$FT + declare!(RWORK,rType,syms)$SYMTAB + iType : FT := construct(integer,[LIWORK],false)$FT + declare!(IWORK,iType,syms)$SYMTAB + declare!(IFAIL,fortranInteger()$FT,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST, + [MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK],syms) + + coerce(a:MAT MFLOAT):$ == + locals : SYMTAB := empty() + numRows := nrows(a) :: Polynomial Integer + numCols := ncols(a) :: Polynomial Integer + declare!(A,[real,[numRows,numCols],false]$FT,locals) + declare!(F06PAF@S,construct(["void"]$UFST,[]@List(S),true)$FT,locals) + ptA:UEXPR := [("MODE"::S)::EXI] + ptB:UEXPR := [1::EXI] + ptC:UEXPR := [2::EXI] + sw1 : Switch := EQ(ptA,ptB)$Switch + sw2 : Switch := EQ(ptA,ptC)$Switch + callOne := call("F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1)") + callTwo := call("F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1)") + c : FC := cond(sw1,callOne,cond(sw2,callTwo)) + code : List FC := [assign(A,a),c,returns()] + ([locals,code]$RSFC)::$ + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FortranCode):$ == coerce(c)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP31 Asp31} +<<domain ASP31 Asp31>>= +)abbrev domain ASP31 Asp31 +++ Author: Mike Dewar, Grant Keady and Godfrey Nolan +++ Date Created: Mar 1993 +++ Date Last Updated: 22 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranMatrixFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp31} produces Fortran for Type 31 ASPs, needed for NAG routine +++\axiomOpFrom{d02ejf}{d02Package}, for example: +++\begin{verbatim} +++ SUBROUTINE PEDERV(X,Y,PW) +++ DOUBLE PRECISION X,Y(*) +++ DOUBLE PRECISION PW(3,3) +++ PW(1,1)=-0.03999999999999999D0 +++ PW(1,2)=10000.0D0*Y(3) +++ PW(1,3)=10000.0D0*Y(2) +++ PW(2,1)=0.03999999999999999D0 +++ PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) +++ PW(2,3)=-10000.0D0*Y(2) +++ PW(3,1)=0.0D0 +++ PW(3,2)=60000000.0D0*Y(2) +++ PW(3,3)=0.0D0 +++ RETURN +++ END +++\end{verbatim} + +Asp31(name): Exports == Implementation where + name : Symbol + + O ==> OutputForm + FST ==> FortranScalarType + UFST ==> Union(fst:FST,void:"void") + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression(['X],['Y],MFLOAT) + FT ==> FortranType + FC ==> FortranCode + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + MAT ==> Matrix + VF2 ==> VectorFunctions2 + MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR, + EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT) + + + + Exports ==> FortranVectorFunctionCategory with + coerce : VEC FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + + real : UFST := ["real"::FST]$UFST + syms : SYMTAB := empty() + declare!(X,fortranReal(),syms)$SYMTAB + yType : FT := construct(real,["*"::Symbol],false)$FT + declare!(Y,yType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST,[X,Y,PW],syms) + + -- To help the poor old compiler! + fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR + + localAssign(s:Symbol,j:MAT FEXPR):FC == + j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2 + assign(s,j')$FC + + makeXList(n:Integer):List(Symbol) == + j:Integer + y:Symbol := Y::Symbol + p:List(Symbol) := [] + for j in 1 .. n repeat p:= cons(subscript(y,[j::OutputForm])$Symbol,p) + p:= reverse(p) + + coerce(u:VEC FEXPR):$ == + dimension := #u::Polynomial Integer + locals : SYMTAB := empty() + declare!(PW,[real,[dimension,dimension],false]$FT,locals)$SYMTAB + n:Integer := maxIndex(u)$VEC(FEXPR) + p:List(Symbol) := makeXList(n) + jac: MAT FEXPR := jacobian(u,p)$MultiVariableCalculusFunctions(_ + Symbol,FEXPR ,VEC FEXPR,List(Symbol)) + code : List FC := [localAssign(PW,jac),returns()$FC]$List(FC) + ([locals,code]$RSFC)::$ + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + coerce(c:List FC):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FC):$ == coerce(c)$Rep + + coerce(u:$):O == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP33 Asp33} +<<domain ASP33 Asp33>>= +)abbrev domain ASP33 Asp33 +++ Author: Mike Dewar and Godfrey Nolan +++ Date Created: Nov 1993 +++ Date Last Updated: 30 March 1994 +++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory. +++ Description: +++\spadtype{Asp33} produces Fortran for Type 33 ASPs, needed for NAG routine +++\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP: +++\begin{verbatim} +++ SUBROUTINE REPORT(X,V,JINT) +++ DOUBLE PRECISION V(3),X +++ INTEGER JINT +++ RETURN +++ END +++\end{verbatim} + +Asp33(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + UFST ==> Union(fst:FST,void:"void") + FT ==> FortranType + SYMTAB ==> SymbolTable + FC ==> FortranCode + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + + Exports ==> FortranProgramCategory with + outputAsFortran:() -> Void + ++outputAsFortran() generates the default code for \spadtype{ASP33}. + + + Implementation ==> add + + real : UFST := ["real"::FST]$UFST + syms : SYMTAB := empty() + declare!(JINT,fortranInteger(),syms)$SYMTAB + declare!(X,fortranReal(),syms)$SYMTAB + vType : FT := construct(real,["3"::Symbol],false)$FT + declare!(V,vType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST,[X,V,JINT],syms) + + outputAsFortran():Void == + outputAsFortran( (returns()$FortranCode)::Rep )$Rep + + outputAsFortran(u):Void == outputAsFortran(u)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + +@ +\section{domain ASP34 Asp34} +<<domain ASP34 Asp34>>= +)abbrev domain ASP34 Asp34 +++ Author: Mike Dewar and Godfrey Nolan +++ Date Created: Nov 1993 +++ Date Last Updated: 14 June 1994 (Themos Tsikas) +++ 6 October 1994 +++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp34} produces Fortran for Type 34 ASPs, needed for NAG routine +++\axiomOpFrom{f04mbf}{f04Package}, for example: +++\begin{verbatim} +++ SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) +++ DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) +++ INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) +++ DOUBLE PRECISION W1(3),W2(3),MS(3,3) +++ IFLAG=-1 +++ MS(1,1)=2.0D0 +++ MS(1,2)=1.0D0 +++ MS(1,3)=0.0D0 +++ MS(2,1)=1.0D0 +++ MS(2,2)=2.0D0 +++ MS(2,3)=1.0D0 +++ MS(3,1)=0.0D0 +++ MS(3,2)=1.0D0 +++ MS(3,3)=2.0D0 +++ CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) +++ IFLAG=-IFLAG +++ RETURN +++ END +++\end{verbatim} + +Asp34(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + UFST ==> Union(fst:FST,void:"void") + SYMTAB ==> SymbolTable + FC ==> FortranCode + PI ==> PositiveInteger + EXI ==> Expression Integer + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + + Exports == FortranMatrixCategory + + Implementation == add + + real : UFST := ["real"::FST]$UFST + integer : UFST := ["integer"::FST]$UFST + syms : SYMTAB := empty()$SYMTAB + declare!(IFLAG,fortranInteger(),syms)$SYMTAB + declare!(N,fortranInteger(),syms)$SYMTAB + xType : FT := construct(real,[N],false)$FT + declare!(X,xType,syms)$SYMTAB + declare!(Y,xType,syms)$SYMTAB + declare!(LRWORK,fortranInteger(),syms)$SYMTAB + declare!(LIWORK,fortranInteger(),syms)$SYMTAB + rType : FT := construct(real,[LRWORK],false)$FT + declare!(RWORK,rType,syms)$SYMTAB + iType : FT := construct(integer,[LIWORK],false)$FT + declare!(IWORK,iType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST, + [IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK],syms) + + -- To help the poor old compiler + localAssign(s:Symbol,u:EXI):FC == assign(s,u)$FC + + coerce(u:Matrix MachineFloat):$ == + dimension := nrows(u) ::Polynomial Integer + locals : SYMTAB := empty()$SYMTAB + declare!(I,fortranInteger(),syms)$SYMTAB + declare!(J,fortranInteger(),syms)$SYMTAB + declare!(W1,[real,[dimension],false]$FT,locals)$SYMTAB + declare!(W2,[real,[dimension],false]$FT,locals)$SYMTAB + declare!(MS,[real,[dimension,dimension],false]$FT,locals)$SYMTAB + assign1 : FC := localAssign(IFLAG@Symbol,(-1)@EXI) + call : FC := call("F04ASF(MS,N,X,N,Y,W1,W2,IFLAG)")$FC + assign2 : FC := localAssign(IFLAG::Symbol,-(IFLAG@Symbol::EXI)) + assign3 : FC := assign(MS,u)$FC + code : List FC := [assign1,assign3,call,assign2,returns()]$List(FC) + ([locals,code]$RSFC)::$ + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FortranCode):$ == coerce(c)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP35 Asp35} +<<domain ASP35 Asp35>>= +)abbrev domain ASP35 Asp35 +++ Author: Mike Dewar, Godfrey Nolan, Grant Keady +++ Date Created: Mar 1993 +++ Date Last Updated: 22 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp35} produces Fortran for Type 35 ASPs, needed for NAG routines +++\axiomOpFrom{c05pbf}{c05Package}, \axiomOpFrom{c05pcf}{c05Package}, for example: +++\begin{verbatim} +++ SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) +++ DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) +++ INTEGER LDFJAC,N,IFLAG +++ IF(IFLAG.EQ.1)THEN +++ FVEC(1)=(-1.0D0*X(2))+X(1) +++ FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) +++ FVEC(3)=3.0D0*X(3) +++ ELSEIF(IFLAG.EQ.2)THEN +++ FJAC(1,1)=1.0D0 +++ FJAC(1,2)=-1.0D0 +++ FJAC(1,3)=0.0D0 +++ FJAC(2,1)=0.0D0 +++ FJAC(2,2)=2.0D0 +++ FJAC(2,3)=-1.0D0 +++ FJAC(3,1)=0.0D0 +++ FJAC(3,2)=0.0D0 +++ FJAC(3,3)=3.0D0 +++ ENDIF +++ END +++\end{verbatim} + +Asp35(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + UFST ==> Union(fst:FST,void:"void") + SYMTAB ==> SymbolTable + FC ==> FortranCode + PI ==> PositiveInteger + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + MAT ==> Matrix + VF2 ==> VectorFunctions2 + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression([],['X],MFLOAT) + MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR, + EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT) + SWU ==> Union(I:Expression Integer,F:Expression Float, + CF:Expression Complex Float,switch:Switch) + + Exports ==> FortranVectorFunctionCategory with + coerce : VEC FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + real : UFST := ["real"::FST]$UFST + syms : SYMTAB := empty()$SYMTAB + declare!(N,fortranInteger(),syms)$SYMTAB + xType : FT := construct(real,[N],false)$FT + declare!(X,xType,syms)$SYMTAB + declare!(FVEC,xType,syms)$SYMTAB + declare!(LDFJAC,fortranInteger(),syms)$SYMTAB + jType : FT := construct(real,[LDFJAC,N],false)$FT + declare!(FJAC,jType,syms)$SYMTAB + declare!(IFLAG,fortranInteger(),syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST,[N,X,FVEC,FJAC,LDFJAC,IFLAG],syms) + + coerce(u:$):OutputForm == coerce(u)$Rep + + makeXList(n:Integer):List(Symbol) == + x:Symbol := X::Symbol + [subscript(x,[j::OutputForm])$Symbol for j in 1..n] + + fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR + + localAssign1(s:Symbol,j:MAT FEXPR):FC == + j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2 + assign(s,j')$FC + + localAssign2(s:Symbol,j:VEC FEXPR):FC == + j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) + assign(s,j')$FC + + coerce(u:VEC FEXPR):$ == + n:Integer := maxIndex(u) + p:List(Symbol) := makeXList(n) + jac: MAT FEXPR := jacobian(u,p)$MultiVariableCalculusFunctions(_ + Symbol,FEXPR,VEC FEXPR,List(Symbol)) + assf:FC := localAssign2(FVEC,u) + assj:FC := localAssign1(FJAC,jac) + iflag:SWU := [IFLAG@Symbol::EXPR(INT)]$SWU + sw1:Switch := EQ(iflag,[1::EXPR(INT)]$SWU) + sw2:Switch := EQ(iflag,[2::EXPR(INT)]$SWU) + cond(sw1,assf,cond(sw2,assj)$FC)$FC::$ + + coerce(c:List FC):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FC):$ == coerce(c)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + +@ +\section{domain ASP4 Asp4} +<<domain ASP4 Asp4>>= +)abbrev domain ASP4 Asp4 +++ Author: Mike Dewar, Grant Keady and Godfrey Nolan +++ Date Created: Mar 1993 +++ Date Last Updated: 18 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp4} produces Fortran for Type 4 ASPs, which take an expression +++in X(1) .. X(NDIM) and produce a real function of the form: +++\begin{verbatim} +++ DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) +++ DOUBLE PRECISION X(NDIM) +++ INTEGER NDIM +++ FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* +++ &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) +++ RETURN +++ END +++\end{verbatim} + +Asp4(name): Exports == Implementation where + name : Symbol + + FEXPR ==> FortranExpression([],['X],MachineFloat) + FST ==> FortranScalarType + FT ==> FortranType + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FSTU ==> Union(fst:FST,void:"void") + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + + Exports ==> FortranFunctionCategory with + coerce : FEXPR -> $ + ++coerce(f) takes an object from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns it into an ASP. + + Implementation ==> add + + real : FSTU := ["real"::FST]$FSTU + syms : SYMTAB := empty()$SYMTAB + declare!(NDIM,fortranInteger(),syms)$SYMTAB + xType : FT := construct(real,[NDIM],false)$FT + declare!(X,xType,syms)$SYMTAB + Rep := FortranProgram(name,real,[NDIM,X],syms) + + retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:FRAC POLY INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + foo::FEXPR::$ + + retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + foo::FEXPR::$ + + retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:EXPR FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + foo::FEXPR::$ + + retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:EXPR INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + foo::FEXPR::$ + + retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:POLY FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + foo::FEXPR::$ + + retract(u:POLY INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:POLY INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + foo::FEXPR::$ + + coerce(u:FEXPR):$ == + coerce((u::Expression(MachineFloat))$FEXPR)$Rep + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FortranCode):$ == coerce(c)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP41 Asp41} +<<domain ASP41 Asp41>>= +)abbrev domain ASP41 Asp41 +++ Author: Mike Dewar, Godfrey Nolan +++ Date Created: +++ Date Last Updated: 29 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranFunctionCategory, FortranProgramCategory. +++ Description: +++\spadtype{Asp41} produces Fortran for Type 41 ASPs, needed for NAG +++routines \axiomOpFrom{d02raf}{d02Package} and \axiomOpFrom{d02saf}{d02Package} +++in particular. These ASPs are in fact +++three Fortran routines which return a vector of functions, and their +++derivatives wrt Y(i) and also a continuation parameter EPS, for example: +++\begin{verbatim} +++ SUBROUTINE FCN(X,EPS,Y,F,N) +++ DOUBLE PRECISION EPS,F(N),X,Y(N) +++ INTEGER N +++ F(1)=Y(2) +++ F(2)=Y(3) +++ F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) +++ RETURN +++ END +++ SUBROUTINE JACOBF(X,EPS,Y,F,N) +++ DOUBLE PRECISION EPS,F(N,N),X,Y(N) +++ INTEGER N +++ F(1,1)=0.0D0 +++ F(1,2)=1.0D0 +++ F(1,3)=0.0D0 +++ F(2,1)=0.0D0 +++ F(2,2)=0.0D0 +++ F(2,3)=1.0D0 +++ F(3,1)=-1.0D0*Y(3) +++ F(3,2)=4.0D0*EPS*Y(2) +++ F(3,3)=-1.0D0*Y(1) +++ RETURN +++ END +++ SUBROUTINE JACEPS(X,EPS,Y,F,N) +++ DOUBLE PRECISION EPS,F(N),X,Y(N) +++ INTEGER N +++ F(1)=0.0D0 +++ F(2)=0.0D0 +++ F(3)=2.0D0*Y(2)**2-2.0D0 +++ RETURN +++ END +++\end{verbatim} + +Asp41(nameOne,nameTwo,nameThree): Exports == Implementation where + nameOne : Symbol + nameTwo : Symbol + nameThree : Symbol + + D ==> differentiate + FST ==> FortranScalarType + UFST ==> Union(fst:FST,void:"void") + FT ==> FortranType + FC ==> FortranCode + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + VF2 ==> VectorFunctions2 + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression(['X,'EPS],['Y],MFLOAT) + S ==> Symbol + MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR, + EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT) + + Exports ==> FortranVectorFunctionCategory with + coerce : VEC FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + real : UFST := ["real"::FST]$UFST + + symOne : SYMTAB := empty()$SYMTAB + declare!(N,fortranInteger(),symOne)$SYMTAB + declare!(X,fortranReal(),symOne)$SYMTAB + declare!(EPS,fortranReal(),symOne)$SYMTAB + yType : FT := construct(real,[N],false)$FT + declare!(Y,yType,symOne)$SYMTAB + declare!(F,yType,symOne)$SYMTAB + + symTwo : SYMTAB := empty()$SYMTAB + declare!(N,fortranInteger(),symTwo)$SYMTAB + declare!(X,fortranReal(),symTwo)$SYMTAB + declare!(EPS,fortranReal(),symTwo)$SYMTAB + declare!(Y,yType,symTwo)$SYMTAB + fType : FT := construct(real,[N,N],false)$FT + declare!(F,fType,symTwo)$SYMTAB + + symThree : SYMTAB := empty()$SYMTAB + declare!(N,fortranInteger(),symThree)$SYMTAB + declare!(X,fortranReal(),symThree)$SYMTAB + declare!(EPS,fortranReal(),symThree)$SYMTAB + declare!(Y,yType,symThree)$SYMTAB + declare!(F,yType,symThree)$SYMTAB + + R1:=FortranProgram(nameOne,["void"]$UFST,[X,EPS,Y,F,N],symOne) + R2:=FortranProgram(nameTwo,["void"]$UFST,[X,EPS,Y,F,N],symTwo) + R3:=FortranProgram(nameThree,["void"]$UFST,[X,EPS,Y,F,N],symThree) + Rep := Record(f:R1,fJacob:R2,eJacob:R3) + Fsym:Symbol:=coerce "F" + + fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR + + localAssign1(s:S,j:Matrix FEXPR):FC == + j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2 + assign(s,j')$FC + + localAssign2(s:S,j:VEC FEXPR):FC == + j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) + assign(s,j')$FC + + makeCodeOne(u:VEC FEXPR):FortranCode == + -- simple assign + localAssign2(Fsym,u) + + makeCodeThree(u:VEC FEXPR):FortranCode == + -- compute jacobian wrt to eps + jacEps:VEC FEXPR := [D(v,EPS) for v in entries(u)]$VEC(FEXPR) + makeCodeOne(jacEps) + + makeYList(n:Integer):List(Symbol) == + j:Integer + y:Symbol := Y::Symbol + p:List(Symbol) := [] + [subscript(y,[j::OutputForm])$Symbol for j in 1..n] + + makeCodeTwo(u:VEC FEXPR):FortranCode == + -- compute jacobian wrt to f + n:Integer := maxIndex(u)$VEC(FEXPR) + p:List(Symbol) := makeYList(n) + jac:Matrix(FEXPR) := _ + jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S)) + localAssign1(Fsym,jac) + + coerce(u:VEC FEXPR):$ == + aF:FortranCode := makeCodeOne(u) + bF:FortranCode := makeCodeTwo(u) + cF:FortranCode := makeCodeThree(u) + -- add returns() to complete subroutines + aLF:List(FortranCode) := [aF,returns()$FortranCode]$List(FortranCode) + bLF:List(FortranCode) := [bF,returns()$FortranCode]$List(FortranCode) + cLF:List(FortranCode) := [cF,returns()$FortranCode]$List(FortranCode) + [coerce(aLF)$R1,coerce(bLF)$R2,coerce(cLF)$R3] + + coerce(u:$):OutputForm == + bracket commaSeparate + [nameOne::OutputForm,nameTwo::OutputForm,nameThree::OutputForm] + + outputAsFortran(u:$):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran elt(u,f)$Rep + outputAsFortran elt(u,fJacob)$Rep + outputAsFortran elt(u,eJacob)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + +@ +\section{domain ASP42 Asp42} +<<domain ASP42 Asp42>>= +)abbrev domain ASP42 Asp42 +++ Author: Mike Dewar, Godfrey Nolan +++ Date Created: +++ Date Last Updated: 29 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranFunctionCategory, FortranProgramCategory. +++ Description: +++\spadtype{Asp42} produces Fortran for Type 42 ASPs, needed for NAG +++routines \axiomOpFrom{d02raf}{d02Package} and \axiomOpFrom{d02saf}{d02Package} +++in particular. These ASPs are in fact +++three Fortran routines which return a vector of functions, and their +++derivatives wrt Y(i) and also a continuation parameter EPS, for example: +++\begin{verbatim} +++ SUBROUTINE G(EPS,YA,YB,BC,N) +++ DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) +++ INTEGER N +++ BC(1)=YA(1) +++ BC(2)=YA(2) +++ BC(3)=YB(2)-1.0D0 +++ RETURN +++ END +++ SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) +++ DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) +++ INTEGER N +++ AJ(1,1)=1.0D0 +++ AJ(1,2)=0.0D0 +++ AJ(1,3)=0.0D0 +++ AJ(2,1)=0.0D0 +++ AJ(2,2)=1.0D0 +++ AJ(2,3)=0.0D0 +++ AJ(3,1)=0.0D0 +++ AJ(3,2)=0.0D0 +++ AJ(3,3)=0.0D0 +++ BJ(1,1)=0.0D0 +++ BJ(1,2)=0.0D0 +++ BJ(1,3)=0.0D0 +++ BJ(2,1)=0.0D0 +++ BJ(2,2)=0.0D0 +++ BJ(2,3)=0.0D0 +++ BJ(3,1)=0.0D0 +++ BJ(3,2)=1.0D0 +++ BJ(3,3)=0.0D0 +++ RETURN +++ END +++ SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) +++ DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) +++ INTEGER N +++ BCEP(1)=0.0D0 +++ BCEP(2)=0.0D0 +++ BCEP(3)=0.0D0 +++ RETURN +++ END +++\end{verbatim} + +Asp42(nameOne,nameTwo,nameThree): Exports == Implementation where + nameOne : Symbol + nameTwo : Symbol + nameThree : Symbol + + D ==> differentiate + FST ==> FortranScalarType + FT ==> FortranType + FP ==> FortranProgram + FC ==> FortranCode + PI ==> PositiveInteger + NNI ==> NonNegativeInteger + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + UFST ==> Union(fst:FST,void:"void") + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + VF2 ==> VectorFunctions2 + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression(['EPS],['YA,'YB],MFLOAT) + S ==> Symbol + MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR, + EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT) + + Exports ==> FortranVectorFunctionCategory with + coerce : VEC FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + real : UFST := ["real"::FST]$UFST + + symOne : SYMTAB := empty()$SYMTAB + declare!(EPS,fortranReal(),symOne)$SYMTAB + declare!(N,fortranInteger(),symOne)$SYMTAB + yType : FT := construct(real,[N],false)$FT + declare!(YA,yType,symOne)$SYMTAB + declare!(YB,yType,symOne)$SYMTAB + declare!(BC,yType,symOne)$SYMTAB + + symTwo : SYMTAB := empty()$SYMTAB + declare!(EPS,fortranReal(),symTwo)$SYMTAB + declare!(N,fortranInteger(),symTwo)$SYMTAB + declare!(YA,yType,symTwo)$SYMTAB + declare!(YB,yType,symTwo)$SYMTAB + ajType : FT := construct(real,[N,N],false)$FT + declare!(AJ,ajType,symTwo)$SYMTAB + declare!(BJ,ajType,symTwo)$SYMTAB + + symThree : SYMTAB := empty()$SYMTAB + declare!(EPS,fortranReal(),symThree)$SYMTAB + declare!(N,fortranInteger(),symThree)$SYMTAB + declare!(YA,yType,symThree)$SYMTAB + declare!(YB,yType,symThree)$SYMTAB + declare!(BCEP,yType,symThree)$SYMTAB + + rt := ["void"]$UFST + R1:=FortranProgram(nameOne,rt,[EPS,YA,YB,BC,N],symOne) + R2:=FortranProgram(nameTwo,rt,[EPS,YA,YB,AJ,BJ,N],symTwo) + R3:=FortranProgram(nameThree,rt,[EPS,YA,YB,BCEP,N],symThree) + Rep := Record(g:R1,gJacob:R2,geJacob:R3) + BCsym:Symbol:=coerce "BC" + AJsym:Symbol:=coerce "AJ" + BJsym:Symbol:=coerce "BJ" + BCEPsym:Symbol:=coerce "BCEP" + + makeList(n:Integer,s:Symbol):List(Symbol) == + j:Integer + p:List(Symbol) := [] + for j in 1 .. n repeat p:= cons(subscript(s,[j::OutputForm])$Symbol,p) + reverse(p) + + fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR + + localAssign1(s:S,j:Matrix FEXPR):FC == + j' : Matrix EXPR MFLOAT := map(fexpr2expr,j)$MF2 + assign(s,j')$FC + + localAssign2(s:S,j:VEC FEXPR):FC == + j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) + assign(s,j')$FC + + makeCodeOne(u:VEC FEXPR):FortranCode == + -- simple assign + localAssign2(BCsym,u) + + makeCodeTwo(u:VEC FEXPR):List(FortranCode) == + -- compute jacobian wrt to ya + n:Integer := maxIndex(u) + p:List(Symbol) := makeList(n,YA::Symbol) + jacYA:Matrix(FEXPR) := _ + jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S)) + -- compute jacobian wrt to yb + p:List(Symbol) := makeList(n,YB::Symbol) + jacYB: Matrix(FEXPR) := _ + jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S)) + -- assign jacobians to AJ & BJ + [localAssign1(AJsym,jacYA),localAssign1(BJsym,jacYB),returns()$FC]$List(FC) + + makeCodeThree(u:VEC FEXPR):FortranCode == + -- compute jacobian wrt to eps + jacEps:VEC FEXPR := [D(v,EPS) for v in entries u]$VEC(FEXPR) + localAssign2(BCEPsym,jacEps) + + coerce(u:VEC FEXPR):$ == + aF:FortranCode := makeCodeOne(u) + bF:List(FortranCode) := makeCodeTwo(u) + cF:FortranCode := makeCodeThree(u) + -- add returns() to complete subroutines + aLF:List(FortranCode) := [aF,returns()$FC]$List(FortranCode) + cLF:List(FortranCode) := [cF,returns()$FC]$List(FortranCode) + [coerce(aLF)$R1,coerce(bF)$R2,coerce(cLF)$R3] + + coerce(u:$) : OutputForm == + bracket commaSeparate + [nameOne::OutputForm,nameTwo::OutputForm,nameThree::OutputForm] + + outputAsFortran(u:$):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran elt(u,g)$Rep + outputAsFortran elt(u,gJacob)$Rep + outputAsFortran elt(u,geJacob)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + +@ +\section{domain ASP49 Asp49} +<<domain ASP49 Asp49>>= +)abbrev domain ASP49 Asp49 +++ Author: Mike Dewar, Grant Keady and Godfrey Nolan +++ Date Created: Mar 1993 +++ Date Last Updated: 23 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp49} produces Fortran for Type 49 ASPs, needed for NAG routines +++\axiomOpFrom{e04dgf}{e04Package}, \axiomOpFrom{e04ucf}{e04Package}, for example: +++\begin{verbatim} +++ SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) +++ DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) +++ INTEGER N,IUSER(*),MODE,NSTATE +++ OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) +++ &+(-1.0D0*X(2)*X(6)) +++ OBJGRD(1)=X(7) +++ OBJGRD(2)=-1.0D0*X(6) +++ OBJGRD(3)=X(8)+(-1.0D0*X(7)) +++ OBJGRD(4)=X(9) +++ OBJGRD(5)=-1.0D0*X(8) +++ OBJGRD(6)=-1.0D0*X(2) +++ OBJGRD(7)=(-1.0D0*X(3))+X(1) +++ OBJGRD(8)=(-1.0D0*X(5))+X(3) +++ OBJGRD(9)=X(4) +++ RETURN +++ END +++\end{verbatim} + +Asp49(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + UFST ==> Union(fst:FST,void:"void") + FT ==> FortranType + FC ==> FortranCode + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FC)) + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression([],['X],MFLOAT) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + VF2 ==> VectorFunctions2 + S ==> Symbol + + Exports ==> FortranFunctionCategory with + coerce : FEXPR -> $ + ++coerce(f) takes an object from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns it into an ASP. + + Implementation ==> add + + real : UFST := ["real"::FST]$UFST + integer : UFST := ["integer"::FST]$UFST + syms : SYMTAB := empty()$SYMTAB + declare!(MODE,fortranInteger(),syms)$SYMTAB + declare!(N,fortranInteger(),syms)$SYMTAB + xType : FT := construct(real,[N::S],false)$FT + declare!(X,xType,syms)$SYMTAB + declare!(OBJF,fortranReal(),syms)$SYMTAB + declare!(OBJGRD,xType,syms)$SYMTAB + declare!(NSTATE,fortranInteger(),syms)$SYMTAB + iuType : FT := construct(integer,["*"::S],false)$FT + declare!(IUSER,iuType,syms)$SYMTAB + uType : FT := construct(real,["*"::S],false)$FT + declare!(USER,uType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST, + [MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER],syms) + + fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR + + localAssign(s:S,j:VEC FEXPR):FC == + j' : VEC EXPR MFLOAT := map(fexpr2expr,j)$VF2(FEXPR,EXPR MFLOAT) + assign(s,j')$FC + + coerce(u:FEXPR):$ == + vars:List(S) := variables(u) + grd:VEC FEXPR := gradient(u,vars)$MultiVariableCalculusFunctions(_ + S,FEXPR,VEC FEXPR,List(S)) + code : List(FC) := [assign(OBJF@S,fexpr2expr u)$FC,_ + localAssign(OBJGRD@S,grd),_ + returns()$FC] + code::$ + + coerce(u:$):OutputForm == coerce(u)$Rep + + coerce(c:List FC):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FC):$ == coerce(c)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:FRAC POLY INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:EXPR FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:EXPR INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:POLY FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:POLY INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:POLY INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + +@ +\section{domain ASP50 Asp50} +<<domain ASP50 Asp50>>= +)abbrev domain ASP50 Asp50 +++ Author: Mike Dewar, Grant Keady and Godfrey Nolan +++ Date Created: Mar 1993 +++ Date Last Updated: 23 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp50} produces Fortran for Type 50 ASPs, needed for NAG routine +++\axiomOpFrom{e04fdf}{e04Package}, for example: +++\begin{verbatim} +++ SUBROUTINE LSFUN1(M,N,XC,FVECC) +++ DOUBLE PRECISION FVECC(M),XC(N) +++ INTEGER I,M,N +++ FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( +++ &XC(3)+15.0D0*XC(2)) +++ FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X +++ &C(3)+7.0D0*XC(2)) +++ FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 +++ &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) +++ FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X +++ &C(3)+3.0D0*XC(2)) +++ FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC +++ &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) +++ FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X +++ &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) +++ FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 +++ &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) +++ FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 +++ &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) +++ FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 +++ &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) +++ FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 +++ &67D0)/(XC(3)+XC(2)) +++ FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 +++ &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) +++ FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) +++ &+XC(2)) +++ FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 +++ &3333D0)/(XC(3)+XC(2)) +++ FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X +++ &C(2)) +++ FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 +++ &)+XC(2)) +++ END +++\end{verbatim} + +Asp50(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + UFST ==> Union(fst:FST,void:"void") + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + VF2 ==> VectorFunctions2 + FEXPR ==> FortranExpression([],['XC],MFLOAT) + MFLOAT ==> MachineFloat + + Exports ==> FortranVectorFunctionCategory with + coerce : VEC FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + real : UFST := ["real"::FST]$UFST + syms : SYMTAB := empty()$SYMTAB + declare!(M,fortranInteger(),syms)$SYMTAB + declare!(N,fortranInteger(),syms)$SYMTAB + xcType : FT := construct(real,[N],false)$FT + declare!(XC,xcType,syms)$SYMTAB + fveccType : FT := construct(real,[M],false)$FT + declare!(FVECC,fveccType,syms)$SYMTAB + declare!(I,fortranInteger(),syms)$SYMTAB + tType : FT := construct(real,[M,N],false)$FT +-- declare!(TC,tType,syms)$SYMTAB +-- declare!(Y,fveccType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST, [M,N,XC,FVECC],syms) + + fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR + + coerce(u:VEC FEXPR):$ == + u' : VEC EXPR MFLOAT := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT) + assign(FVECC,u')$FortranCode::$ + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FortranCode):$ == coerce(c)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP55 Asp55} +<<domain ASP55 Asp55>>= +)abbrev domain ASP55 Asp55 +++ Author: Mike Dewar, Grant Keady and Godfrey Nolan +++ Date Created: June 1993 +++ Date Last Updated: 23 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp55} produces Fortran for Type 55 ASPs, needed for NAG routines +++\axiomOpFrom{e04dgf}{e04Package} and \axiomOpFrom{e04ucf}{e04Package}, for example: +++\begin{verbatim} +++ SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER +++ &,USER) +++ DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) +++ INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE +++ IF(NEEDC(1).GT.0)THEN +++ C(1)=X(6)**2+X(1)**2 +++ CJAC(1,1)=2.0D0*X(1) +++ CJAC(1,2)=0.0D0 +++ CJAC(1,3)=0.0D0 +++ CJAC(1,4)=0.0D0 +++ CJAC(1,5)=0.0D0 +++ CJAC(1,6)=2.0D0*X(6) +++ ENDIF +++ IF(NEEDC(2).GT.0)THEN +++ C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 +++ CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) +++ CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) +++ CJAC(2,3)=0.0D0 +++ CJAC(2,4)=0.0D0 +++ CJAC(2,5)=0.0D0 +++ CJAC(2,6)=0.0D0 +++ ENDIF +++ IF(NEEDC(3).GT.0)THEN +++ C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 +++ CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) +++ CJAC(3,2)=2.0D0*X(2) +++ CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) +++ CJAC(3,4)=0.0D0 +++ CJAC(3,5)=0.0D0 +++ CJAC(3,6)=0.0D0 +++ ENDIF +++ RETURN +++ END +++\end{verbatim} + +Asp55(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + FSTU ==> Union(fst:FST,void:"void") + SYMTAB ==> SymbolTable + FC ==> FortranCode + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + S ==> Symbol + FLOAT ==> Float + VEC ==> Vector + VF2 ==> VectorFunctions2 + MAT ==> Matrix + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression([],['X],MFLOAT) + MF2 ==> MatrixCategoryFunctions2(FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR, + EXPR MFLOAT,VEC EXPR MFLOAT,VEC EXPR MFLOAT,MAT EXPR MFLOAT) + SWU ==> Union(I:Expression Integer,F:Expression Float, + CF:Expression Complex Float,switch:Switch) + + Exports ==> FortranVectorFunctionCategory with + coerce : VEC FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + real : FSTU := ["real"::FST]$FSTU + integer : FSTU := ["integer"::FST]$FSTU + syms : SYMTAB := empty()$SYMTAB + declare!(MODE,fortranInteger(),syms)$SYMTAB + declare!(NCNLN,fortranInteger(),syms)$SYMTAB + declare!(N,fortranInteger(),syms)$SYMTAB + declare!(NROWJ,fortranInteger(),syms)$SYMTAB + needcType : FT := construct(integer,[NCNLN::Symbol],false)$FT + declare!(NEEDC,needcType,syms)$SYMTAB + xType : FT := construct(real,[N::Symbol],false)$FT + declare!(X,xType,syms)$SYMTAB + cType : FT := construct(real,[NCNLN::Symbol],false)$FT + declare!(C,cType,syms)$SYMTAB + cjacType : FT := construct(real,[NROWJ::Symbol,N::Symbol],false)$FT + declare!(CJAC,cjacType,syms)$SYMTAB + declare!(NSTATE,fortranInteger(),syms)$SYMTAB + iuType : FT := construct(integer,["*"::Symbol],false)$FT + declare!(IUSER,iuType,syms)$SYMTAB + uType : FT := construct(real,["*"::Symbol],false)$FT + declare!(USER,uType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$FSTU, + [MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER,USER],syms) + + -- Take a symbol, pull of the script and turn it into an integer!! + o2int(u:S):Integer == + o : OutputForm := first elt(scripts(u)$S,sub) + o pretend Integer + + localAssign(s:Symbol,dim:List POLY INT,u:FEXPR):FC == + assign(s,dim,(u::EXPR MFLOAT)$FEXPR)$FC + + makeCond(index:INT,fun:FEXPR,jac:VEC FEXPR):FC == + needc : EXPR INT := (subscript(NEEDC,[index::OutputForm])$S)::EXPR(INT) + sw : Switch := GT([needc]$SWU,[0::EXPR(INT)]$SWU)$Switch + ass : List FC := [localAssign(CJAC,[index::POLY INT,i::POLY INT],jac.i)_ + for i in 1..maxIndex(jac)] + cond(sw,block([localAssign(C,[index::POLY INT],fun),:ass])$FC)$FC + + coerce(u:VEC FEXPR):$ == + ncnln:Integer := maxIndex(u) + x:S := X::S + pu:List(S) := [] + -- Work out which variables appear in the expressions + for e in entries(u) repeat + pu := setUnion(pu,variables(e)$FEXPR) + scriptList : List Integer := map(o2int,pu)$ListFunctions2(S,Integer) + -- This should be the maximum X_n which occurs (there may be others + -- which don't): + n:Integer := reduce(max,scriptList)$List(Integer) + p:List(S) := [] + for j in 1..n repeat p:= cons(subscript(x,[j::OutputForm])$S,p) + p:= reverse(p) + jac:MAT FEXPR := _ + jacobian(u,p)$MultiVariableCalculusFunctions(S,FEXPR,VEC FEXPR,List(S)) + code : List FC := [makeCond(j,u.j,row(jac,j)) for j in 1..ncnln] + [:code,returns()$FC]::$ + + coerce(c:List FC):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FC):$ == coerce(c)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + +@ +\section{domain ASP6 Asp6} +<<domain ASP6 Asp6>>= +)abbrev domain ASP6 Asp6 +++ Author: Mike Dewar and Godfrey Nolan and Grant Keady +++ Date Created: Mar 1993 +++ Date Last Updated: 18 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp6} produces Fortran for Type 6 ASPs, needed for NAG routines +++\axiomOpFrom{c05nbf}{c05Package}, \axiomOpFrom{c05ncf}{c05Package}. +++These represent vectors of functions of X(i) and look like: +++\begin{verbatim} +++ SUBROUTINE FCN(N,X,FVEC,IFLAG) +++ DOUBLE PRECISION X(N),FVEC(N) +++ INTEGER N,IFLAG +++ FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 +++ FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. +++ &0D0 +++ FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. +++ &0D0 +++ FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. +++ &0D0 +++ FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. +++ &0D0 +++ FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. +++ &0D0 +++ FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. +++ &0D0 +++ FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. +++ &0D0 +++ FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 +++ RETURN +++ END +++\end{verbatim} + +Asp6(name): Exports == Implementation where + name : Symbol + + FEXPR ==> FortranExpression([],['X],MFLOAT) + MFLOAT ==> MachineFloat + FST ==> FortranScalarType + FT ==> FortranType + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + UFST ==> Union(fst:FST,void:"void") + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + VF2 ==> VectorFunctions2 + + Exports == FortranVectorFunctionCategory with + coerce: Vector FEXPR -> % + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation == add + + real : UFST := ["real"::FST]$UFST + syms : SYMTAB := empty()$SYMTAB + declare!(N,fortranInteger()$FT,syms)$SYMTAB + xType : FT := construct(real,[N],false)$FT + declare!(X,xType,syms)$SYMTAB + declare!(FVEC,xType,syms)$SYMTAB + declare!(IFLAG,fortranInteger()$FT,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$Union(fst:FST,void:"void"), + [N,X,FVEC,IFLAG],syms) + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VectorFunctions2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VectorFunctions2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VectorFunctions2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VectorFunctions2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VectorFunctions2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + fexpr2expr(u:FEXPR):EXPR MFLOAT == + (u::EXPR MFLOAT)$FEXPR + + coerce(u:VEC FEXPR):% == + v : VEC EXPR MFLOAT + v := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT) + ([assign(FVEC,v)$FortranCode,returns()$FortranCode]$List(FortranCode))::$ + + coerce(c:List FortranCode):% == coerce(c)$Rep + + coerce(r:RSFC):% == coerce(r)$Rep + + coerce(c:FortranCode):% == coerce(c)$Rep + + coerce(u:%):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP7 Asp7} +<<domain ASP7 Asp7>>= +)abbrev domain ASP7 Asp7 +++ Author: Mike Dewar and Godfrey Nolan and Grant Keady +++ Date Created: Mar 1993 +++ Date Last Updated: 18 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp7} produces Fortran for Type 7 ASPs, needed for NAG routines +++\axiomOpFrom{d02bbf}{d02Package}, \axiomOpFrom{d02gaf}{d02Package}. +++These represent a vector of functions of the scalar X and +++the array Z, and look like: +++\begin{verbatim} +++ SUBROUTINE FCN(X,Z,F) +++ DOUBLE PRECISION F(*),X,Z(*) +++ F(1)=DTAN(Z(3)) +++ F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) +++ &**2))/(Z(2)*DCOS(Z(3))) +++ F(3)=-0.03199999999999999D0/(X*Z(2)**2) +++ RETURN +++ END +++\end{verbatim} + +Asp7(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FT ==> FortranType + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression(['X],['Y],MFLOAT) + UFST ==> Union(fst:FST,void:"void") + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + VF2 ==> VectorFunctions2 + + Exports ==> FortranVectorFunctionCategory with + coerce : Vector FEXPR -> % + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + real : UFST := ["real"::FST]$UFST + syms : SYMTAB := empty()$SYMTAB + declare!(X,fortranReal(),syms)$SYMTAB + yType : FT := construct(real,["*"::Symbol],false)$FT + declare!(Y,yType,syms)$SYMTAB + declare!(F,yType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST,[X,Y,F],syms) + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + fexpr2expr(u:FEXPR):EXPR MFLOAT == + (u::EXPR MFLOAT)$FEXPR + + coerce(u:Vector FEXPR ):% == + v : Vector EXPR MFLOAT + v:=map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT) + ([assign(F,v)$FortranCode,returns()$FortranCode]$List(FortranCode))::% + + coerce(c:List FortranCode):% == coerce(c)$Rep + + coerce(r:RSFC):% == coerce(r)$Rep + + coerce(c:FortranCode):% == coerce(c)$Rep + + coerce(u:%):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{domain ASP73 Asp73} +<<domain ASP73 Asp73>>= +)abbrev domain ASP73 Asp73 +++ Author: Mike Dewar, Grant Keady and Godfrey Nolan +++ Date Created: Mar 1993 +++ Date Last Updated: 30 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp73} produces Fortran for Type 73 ASPs, needed for NAG routine +++\axiomOpFrom{d03eef}{d03Package}, for example: +++\begin{verbatim} +++ SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) +++ DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI +++ ALPHA=DSIN(X) +++ BETA=Y +++ GAMMA=X*Y +++ DELTA=DCOS(X)*DSIN(Y) +++ EPSOLN=Y+X +++ PHI=X +++ PSI=Y +++ RETURN +++ END +++\end{verbatim} + +Asp73(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FSTU ==> Union(fst:FST,void:"void") + FEXPR ==> FortranExpression(['X,'Y],[],MachineFloat) + FT ==> FortranType + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + VF2 ==> VectorFunctions2 + + Exports ==> FortranVectorFunctionCategory with + coerce : VEC FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + syms : SYMTAB := empty()$SYMTAB + declare!(X,fortranReal(),syms) $SYMTAB + declare!(Y,fortranReal(),syms) $SYMTAB + declare!(ALPHA,fortranReal(),syms)$SYMTAB + declare!(BETA,fortranReal(),syms) $SYMTAB + declare!(GAMMA,fortranReal(),syms) $SYMTAB + declare!(DELTA,fortranReal(),syms) $SYMTAB + declare!(EPSOLN,fortranReal(),syms) $SYMTAB + declare!(PHI,fortranReal(),syms) $SYMTAB + declare!(PSI,fortranReal(),syms) $SYMTAB + Rep := FortranProgram(name,["void"]$FSTU, + [X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI],syms) + + -- To help the poor compiler! + localAssign(u:Symbol,v:FEXPR):FortranCode == + assign(u,(v::EXPR MachineFloat)$FEXPR)$FortranCode + + coerce(u:VEC FEXPR):$ == + maxIndex(u) ^= 7 => error "Vector is not of dimension 7" + [localAssign(ALPHA@Symbol,elt(u,1)),_ + localAssign(BETA@Symbol,elt(u,2)),_ + localAssign(GAMMA@Symbol,elt(u,3)),_ + localAssign(DELTA@Symbol,elt(u,4)),_ + localAssign(EPSOLN@Symbol,elt(u,5)),_ + localAssign(PHI@Symbol,elt(u,6)),_ + localAssign(PSI@Symbol,elt(u,7)),_ + returns()$FortranCode]$List(FortranCode)::$ + + coerce(c:FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + +@ +\section{domain ASP74 Asp74} +<<domain ASP74 Asp74>>= +)abbrev domain ASP74 Asp74 +++ Author: Mike Dewar and Godfrey Nolan +++ Date Created: Oct 1993 +++ Date Last Updated: 30 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranScalarFunctionCategory, FortranProgramCategory. +++ Description: +++\spadtype{Asp74} produces Fortran for Type 74 ASPs, needed for NAG routine +++\axiomOpFrom{d03eef}{d03Package}, for example: +++\begin{verbatim} +++ SUBROUTINE BNDY(X,Y,A,B,C,IBND) +++ DOUBLE PRECISION A,B,C,X,Y +++ INTEGER IBND +++ IF(IBND.EQ.0)THEN +++ A=0.0D0 +++ B=1.0D0 +++ C=-1.0D0*DSIN(X) +++ ELSEIF(IBND.EQ.1)THEN +++ A=1.0D0 +++ B=0.0D0 +++ C=DSIN(X)*DSIN(Y) +++ ELSEIF(IBND.EQ.2)THEN +++ A=1.0D0 +++ B=0.0D0 +++ C=DSIN(X)*DSIN(Y) +++ ELSEIF(IBND.EQ.3)THEN +++ A=0.0D0 +++ B=1.0D0 +++ C=-1.0D0*DSIN(Y) +++ ENDIF +++ END +++\end{verbatim} + +Asp74(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FSTU ==> Union(fst:FST,void:"void") + FT ==> FortranType + SYMTAB ==> SymbolTable + FC ==> FortranCode + PI ==> PositiveInteger + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression(['X,'Y],[],MFLOAT) + U ==> Union(I: Expression Integer,F: Expression Float,_ + CF: Expression Complex Float,switch:Switch) + VEC ==> Vector + MAT ==> Matrix + M2 ==> MatrixCategoryFunctions2 + MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT, + MAT FRAC POLY INT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT, + MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT, + FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT, + MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT, + FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT, + MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + + Exports ==> FortranMatrixFunctionCategory with + coerce : MAT FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + syms : SYMTAB := empty()$SYMTAB + declare!(X,fortranReal(),syms)$SYMTAB + declare!(Y,fortranReal(),syms)$SYMTAB + declare!(A,fortranReal(),syms)$SYMTAB + declare!(B,fortranReal(),syms)$SYMTAB + declare!(C,fortranReal(),syms)$SYMTAB + declare!(IBND,fortranInteger(),syms)$SYMTAB + Rep := FortranProgram(name,["void"]$FSTU,[X,Y,A,B,C,IBND],syms) + + -- To help the poor compiler! + localAssign(u:Symbol,v:FEXPR):FC == assign(u,(v::EXPR MFLOAT)$FEXPR)$FC + + coerce(u:MAT FEXPR):$ == + (nrows(u) ^= 4 or ncols(u) ^= 3) => error "Not a 4X3 matrix" + flag:U := [IBND@Symbol::EXPR INT]$U + pt0:U := [0::EXPR INT]$U + pt1:U := [1::EXPR INT]$U + pt2:U := [2::EXPR INT]$U + pt3:U := [3::EXPR INT]$U + sw1: Switch := EQ(flag,pt0)$Switch + sw2: Switch := EQ(flag,pt1)$Switch + sw3: Switch := EQ(flag,pt2)$Switch + sw4: Switch := EQ(flag,pt3)$Switch + a11 : FC := localAssign(A,u(1,1)) + a12 : FC := localAssign(B,u(1,2)) + a13 : FC := localAssign(C,u(1,3)) + a21 : FC := localAssign(A,u(2,1)) + a22 : FC := localAssign(B,u(2,2)) + a23 : FC := localAssign(C,u(2,3)) + a31 : FC := localAssign(A,u(3,1)) + a32 : FC := localAssign(B,u(3,2)) + a33 : FC := localAssign(C,u(3,3)) + a41 : FC := localAssign(A,u(4,1)) + a42 : FC := localAssign(B,u(4,2)) + a43 : FC := localAssign(C,u(4,3)) + c : FC := cond(sw1,block([a11,a12,a13])$FC, + cond(sw2,block([a21,a22,a23])$FC, + cond(sw3,block([a31,a32,a33])$FC, + cond(sw4,block([a41,a42,a43])$FC)$FC)$FC)$FC)$FC + c::$ + + coerce(u:$):OutputForm == coerce(u)$Rep + + coerce(c:FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + retract(u:MAT FRAC POLY INT):$ == + v : MAT FEXPR := map(retract,u)$MF2a + v::$ + + retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT FRAC POLY FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2b + v::$ + + retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT EXPR INT):$ == + v : MAT FEXPR := map(retract,u)$MF2e + v::$ + + retractIfCan(u:MAT EXPR INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT EXPR FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2f + v::$ + + retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT POLY INT):$ == + v : MAT FEXPR := map(retract,u)$MF2c + v::$ + + retractIfCan(u:MAT POLY INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT POLY FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2d + v::$ + + retractIfCan(u:MAT POLY FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d + v case "failed" => "failed" + (v::MAT FEXPR)::$ + +@ +\section{domain ASP77 Asp77} +<<domain ASP77 Asp77>>= +)abbrev domain ASP77 Asp77 +++ Author: Mike Dewar, Grant Keady and Godfrey Nolan +++ Date Created: Mar 1993 +++ Date Last Updated: 30 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranMatrixFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp77} produces Fortran for Type 77 ASPs, needed for NAG routine +++\axiomOpFrom{d02gbf}{d02Package}, for example: +++\begin{verbatim} +++ SUBROUTINE FCNF(X,F) +++ DOUBLE PRECISION X +++ DOUBLE PRECISION F(2,2) +++ F(1,1)=0.0D0 +++ F(1,2)=1.0D0 +++ F(2,1)=0.0D0 +++ F(2,2)=-10.0D0 +++ RETURN +++ END +++\end{verbatim} + +Asp77(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FSTU ==> Union(fst:FST,void:"void") + FT ==> FortranType + FC ==> FortranCode + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FC)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression(['X],[],MFLOAT) + VEC ==> Vector + MAT ==> Matrix + M2 ==> MatrixCategoryFunctions2 + MF2 ==> M2(FEXPR,VEC FEXPR,VEC FEXPR,Matrix FEXPR,EXPR MFLOAT, + VEC EXPR MFLOAT,VEC EXPR MFLOAT,Matrix EXPR MFLOAT) + MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT, + MAT FRAC POLY INT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT, + MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT, + FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT, + MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT, + FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT, + MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + + + Exports ==> FortranMatrixFunctionCategory with + coerce : MAT FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + real : FSTU := ["real"::FST]$FSTU + syms : SYMTAB := empty()$SYMTAB + declare!(X,fortranReal(),syms)$SYMTAB + Rep := FortranProgram(name,["void"]$FSTU,[X,F],syms) + + fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR + + localAssign(s:Symbol,j:MAT FEXPR):FortranCode == + j' : MAT EXPR MFLOAT := map(fexpr2expr,j)$MF2 + assign(s,j')$FortranCode + + coerce(u:MAT FEXPR):$ == + dimension := nrows(u)::POLY(INT) + locals : SYMTAB := empty() + declare!(F,[real,[dimension,dimension]$List(POLY(INT)),false]$FT,locals) + code : List FC := [localAssign(F,u),returns()$FC] + ([locals,code]$RSFC)::$ + + coerce(c:List FC):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FC):$ == coerce(c)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + retract(u:MAT FRAC POLY INT):$ == + v : MAT FEXPR := map(retract,u)$MF2a + v::$ + + retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT FRAC POLY FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2b + v::$ + + retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT EXPR INT):$ == + v : MAT FEXPR := map(retract,u)$MF2e + v::$ + + retractIfCan(u:MAT EXPR INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT EXPR FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2f + v::$ + + retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT POLY INT):$ == + v : MAT FEXPR := map(retract,u)$MF2c + v::$ + + retractIfCan(u:MAT POLY INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT POLY FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2d + v::$ + + retractIfCan(u:MAT POLY FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d + v case "failed" => "failed" + (v::MAT FEXPR)::$ + +@ +\section{domain ASP78 Asp78} +<<domain ASP78 Asp78>>= +)abbrev domain ASP78 Asp78 +++ Author: Mike Dewar, Grant Keady and Godfrey Nolan +++ Date Created: Mar 1993 +++ Date Last Updated: 30 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp78} produces Fortran for Type 78 ASPs, needed for NAG routine +++\axiomOpFrom{d02gbf}{d02Package}, for example: +++\begin{verbatim} +++ SUBROUTINE FCNG(X,G) +++ DOUBLE PRECISION G(*),X +++ G(1)=0.0D0 +++ G(2)=0.0D0 +++ END +++\end{verbatim} + +Asp78(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FSTU ==> Union(fst:FST,void:"void") + FT ==> FortranType + FC ==> FortranCode + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FC)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + VEC ==> Vector + VF2 ==> VectorFunctions2 + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression(['X],[],MFLOAT) + + Exports ==> FortranVectorFunctionCategory with + coerce : VEC FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + real : FSTU := ["real"::FST]$FSTU + syms : SYMTAB := empty()$SYMTAB + declare!(X,fortranReal(),syms)$SYMTAB + gType : FT := construct(real,["*"::Symbol],false)$FT + declare!(G,gType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$FSTU,[X,G],syms) + + fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR + + coerce(u:VEC FEXPR):$ == + u' : VEC EXPR MFLOAT := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT) + (assign(G,u')$FC)::$ + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + coerce(c:List FC):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FC):$ == coerce(c)$Rep + + retract(u:VEC FRAC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC FRAC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(FRAC POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC FRAC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(FRAC POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR INT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC EXPR FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(EXPR FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC EXPR FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(EXPR FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY INT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY INT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY INT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY INT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + + retract(u:VEC POLY FLOAT):$ == + v : VEC FEXPR := map(retract,u)$VF2(POLY FLOAT,FEXPR) + v::$ + + retractIfCan(u:VEC POLY FLOAT):Union($,"failed") == + v:Union(VEC FEXPR,"failed"):=map(retractIfCan,u)$VF2(POLY FLOAT,FEXPR) + v case "failed" => "failed" + (v::VEC FEXPR)::$ + +@ +\section{domain ASP8 Asp8} +<<domain ASP8 Asp8>>= +)abbrev domain ASP8 Asp8 +++ Author: Godfrey Nolan and Mike Dewar +++ Date Created: 11 February 1994 +++ Date Last Updated: 18 March 1994 +++ 31 May 1994 to use alternative interface. MCD +++ 30 June 1994 to handle the end condition correctly. MCD +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp8} produces Fortran for Type 8 ASPs, needed for NAG routine +++\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of +++an ODE and might look like: +++\begin{verbatim} +++ SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) +++ DOUBLE PRECISION Y(N),RESULT(M,N),XSOL +++ INTEGER M,N,COUNT +++ LOGICAL FORWRD +++ DOUBLE PRECISION X02ALF,POINTS(8) +++ EXTERNAL X02ALF +++ INTEGER I +++ POINTS(1)=1.0D0 +++ POINTS(2)=2.0D0 +++ POINTS(3)=3.0D0 +++ POINTS(4)=4.0D0 +++ POINTS(5)=5.0D0 +++ POINTS(6)=6.0D0 +++ POINTS(7)=7.0D0 +++ POINTS(8)=8.0D0 +++ COUNT=COUNT+1 +++ DO 25001 I=1,N +++ RESULT(COUNT,I)=Y(I) +++25001 CONTINUE +++ IF(COUNT.EQ.M)THEN +++ IF(FORWRD)THEN +++ XSOL=X02ALF() +++ ELSE +++ XSOL=-X02ALF() +++ ENDIF +++ ELSE +++ XSOL=POINTS(COUNT) +++ ENDIF +++ END +++\end{verbatim} + +Asp8(name): Exports == Implementation where + name : Symbol + + O ==> OutputForm + S ==> Symbol + FST ==> FortranScalarType + UFST ==> Union(fst:FST,void:"void") + FT ==> FortranType + FC ==> FortranCode + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + EX ==> Expression Integer + MFLOAT ==> MachineFloat + EXPR ==> Expression + PI ==> Polynomial Integer + EXU ==> Union(I: EXPR Integer,F: EXPR Float,CF: EXPR Complex Float, + switch: Switch) + + Exports ==> FortranVectorCategory + + Implementation ==> add + + real : UFST := ["real"::FST]$UFST + syms : SYMTAB := empty()$SYMTAB + declare!([COUNT,M,N],fortranInteger(),syms)$SYMTAB + declare!(XSOL,fortranReal(),syms)$SYMTAB + yType : FT := construct(real,[N],false)$FT + declare!(Y,yType,syms)$SYMTAB + declare!(FORWRD,fortranLogical(),syms)$SYMTAB + declare!(RESULT,construct(real,[M,N],false)$FT,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$UFST,[XSOL,Y,COUNT,M,N,RESULT,FORWRD],syms) + + coerce(c:List FC):% == coerce(c)$Rep + + coerce(r:RSFC):% == coerce(r)$Rep + + coerce(c:FC):% == coerce(c)$Rep + + coerce(u:%):O == coerce(u)$Rep + + outputAsFortran(u:%):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + + f2ex(u:MFLOAT):EXPR MFLOAT == (u::EXPR MFLOAT)$EXPR(MFLOAT) + + coerce(points:Vector MFLOAT):% == + import PI + import EXPR Integer + -- Create some extra declarations + locals : SYMTAB := empty()$SYMTAB + nPol : PI := "N"::S::PI + iPol : PI := "I"::S::PI + countPol : PI := "COUNT"::S::PI + pointsDim : PI := max(#points,1)::PI + declare!(POINTS,[real,[pointsDim],false]$FT,locals)$SYMTAB + declare!(X02ALF,[real,[],true]$FT,locals)$SYMTAB + -- Now build up the code fragments + index : SegmentBinding PI := equation(I@S,1::PI..nPol)$SegmentBinding(PI) + ySym : EX := (subscript("Y"::S,[I::O])$S)::EX + loop := forLoop(index,assign(RESULT,[countPol,iPol],ySym)$FC)$FC + v:Vector EXPR MFLOAT + v := map(f2ex,points)$VectorFunctions2(MFLOAT,EXPR MFLOAT) + assign1 : FC := assign(POINTS,v)$FC + countExp: EX := COUNT@S::EX + newValue: EX := 1 + countExp + assign2 : FC := assign(COUNT,newValue)$FC + newSymbol : S := subscript(POINTS,[COUNT]@List(O))$S + assign3 : FC := assign(XSOL, newSymbol::EX )$FC + fphuge : EX := kernel(operator X02ALF,empty()$List(EX)) + assign4 : FC := assign(XSOL, fphuge)$FC + assign5 : FC := assign(XSOL, -fphuge)$FC + innerCond : FC := cond("FORWRD"::Symbol::Switch,assign4,assign5) + mExp : EX := M@S::EX + endCase : FC := cond(EQ([countExp]$EXU,[mExp]$EXU)$Switch,innerCond,assign3) + code := [assign1, assign2, loop, endCase]$List(FC) + ([locals,code]$RSFC)::% + +@ +\section{domain ASP80 Asp80} +<<domain ASP80 Asp80>>= +)abbrev domain ASP80 Asp80 +++ Author: Mike Dewar and Godfrey Nolan +++ Date Created: Oct 1993 +++ Date Last Updated: 30 March 1994 +++ 6 October 1994 +++ Related Constructors: FortranMatrixFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp80} produces Fortran for Type 80 ASPs, needed for NAG routine +++\axiomOpFrom{d02kef}{d02Package}, for example: +++\begin{verbatim} +++ SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) +++ DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) +++ YL(1)=XL +++ YL(2)=2.0D0 +++ YR(1)=1.0D0 +++ YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) +++ RETURN +++ END +++\end{verbatim} + +Asp80(name): Exports == Implementation where + name : Symbol + + FST ==> FortranScalarType + FSTU ==> Union(fst:FST,void:"void") + FT ==> FortranType + FC ==> FortranCode + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + MFLOAT ==> MachineFloat + FEXPR ==> FortranExpression(['XL,'XR,'ELAM],[],MFLOAT) + VEC ==> Vector + MAT ==> Matrix + VF2 ==> VectorFunctions2 + M2 ==> MatrixCategoryFunctions2 + MF2a ==> M2(FRAC POLY INT,VEC FRAC POLY INT,VEC FRAC POLY INT, + MAT FRAC POLY INT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2b ==> M2(FRAC POLY FLOAT,VEC FRAC POLY FLOAT,VEC FRAC POLY FLOAT, + MAT FRAC POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2c ==> M2(POLY INT,VEC POLY INT,VEC POLY INT,MAT POLY INT, + FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2d ==> M2(POLY FLOAT,VEC POLY FLOAT,VEC POLY FLOAT, + MAT POLY FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2e ==> M2(EXPR INT,VEC EXPR INT,VEC EXPR INT,MAT EXPR INT, + FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + MF2f ==> M2(EXPR FLOAT,VEC EXPR FLOAT,VEC EXPR FLOAT, + MAT EXPR FLOAT, FEXPR,VEC FEXPR,VEC FEXPR,MAT FEXPR) + + Exports ==> FortranMatrixFunctionCategory with + coerce : MAT FEXPR -> $ + ++coerce(f) takes objects from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns them into an ASP. + + Implementation ==> add + + real : FSTU := ["real"::FST]$FSTU + syms : SYMTAB := empty()$SYMTAB + declare!(XL,fortranReal(),syms)$SYMTAB + declare!(XR,fortranReal(),syms)$SYMTAB + declare!(ELAM,fortranReal(),syms)$SYMTAB + yType : FT := construct(real,["3"::Symbol],false)$FT + declare!(YL,yType,syms)$SYMTAB + declare!(YR,yType,syms)$SYMTAB + Rep := FortranProgram(name,["void"]$FSTU, [XL,XR,ELAM,YL,YR],syms) + + fexpr2expr(u:FEXPR):EXPR MFLOAT == coerce(u)$FEXPR + + vecAssign(s:Symbol,u:VEC FEXPR):FC == + u' : VEC EXPR MFLOAT := map(fexpr2expr,u)$VF2(FEXPR,EXPR MFLOAT) + assign(s,u')$FC + + coerce(u:MAT FEXPR):$ == + [vecAssign(YL,row(u,1)),vecAssign(YR,row(u,2)),returns()$FC]$List(FC)::$ + + coerce(c:List FortranCode):$ == coerce(c)$Rep + + coerce(r:RSFC):$ == coerce(r)$Rep + + coerce(c:FortranCode):$ == coerce(c)$Rep + + coerce(u:$):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + + retract(u:MAT FRAC POLY INT):$ == + v : MAT FEXPR := map(retract,u)$MF2a + v::$ + + retractIfCan(u:MAT FRAC POLY INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2a + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT FRAC POLY FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2b + v::$ + + retractIfCan(u:MAT FRAC POLY FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2b + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT EXPR INT):$ == + v : MAT FEXPR := map(retract,u)$MF2e + v::$ + + retractIfCan(u:MAT EXPR INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2e + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT EXPR FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2f + v::$ + + retractIfCan(u:MAT EXPR FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2f + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT POLY INT):$ == + v : MAT FEXPR := map(retract,u)$MF2c + v::$ + + retractIfCan(u:MAT POLY INT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2c + v case "failed" => "failed" + (v::MAT FEXPR)::$ + + retract(u:MAT POLY FLOAT):$ == + v : MAT FEXPR := map(retract,u)$MF2d + v::$ + + retractIfCan(u:MAT POLY FLOAT):Union($,"failed") == + v:Union(MAT FEXPR,"failed"):=map(retractIfCan,u)$MF2d + v case "failed" => "failed" + (v::MAT FEXPR)::$ + +@ +\section{domain ASP9 Asp9} +<<domain ASP9 Asp9>>= +)abbrev domain ASP9 Asp9 +++ Author: Mike Dewar, Grant Keady and Godfrey Nolan +++ Date Created: Mar 1993 +++ Date Last Updated: 18 March 1994 +++ 12 July 1994 added COMMON blocks for d02cjf, d02ejf +++ 6 October 1994 +++ Related Constructors: FortranVectorFunctionCategory, FortranProgramCategory +++ Description: +++\spadtype{Asp9} produces Fortran for Type 9 ASPs, needed for NAG routines +++\axiomOpFrom{d02bhf}{d02Package}, \axiomOpFrom{d02cjf}{d02Package}, \axiomOpFrom{d02ejf}{d02Package}. +++These ASPs represent a function of a scalar X and a vector Y, for example: +++\begin{verbatim} +++ DOUBLE PRECISION FUNCTION G(X,Y) +++ DOUBLE PRECISION X,Y(*) +++ G=X+Y(1) +++ RETURN +++ END +++\end{verbatim} +++If the user provides a constant value for G, then extra information is added +++via COMMON blocks used by certain routines. This specifies that the value +++returned by G in this case is to be ignored. + +Asp9(name): Exports == Implementation where + name : Symbol + + FEXPR ==> FortranExpression(['X],['Y],MFLOAT) + MFLOAT ==> MachineFloat + FC ==> FortranCode + FST ==> FortranScalarType + FT ==> FortranType + SYMTAB ==> SymbolTable + RSFC ==> Record(localSymbols:SymbolTable,code:List(FortranCode)) + UFST ==> Union(fst:FST,void:"void") + FRAC ==> Fraction + POLY ==> Polynomial + EXPR ==> Expression + INT ==> Integer + FLOAT ==> Float + + Exports ==> FortranFunctionCategory with + coerce : FEXPR -> % + ++coerce(f) takes an object from the appropriate instantiation of + ++\spadtype{FortranExpression} and turns it into an ASP. + + Implementation ==> add + + real : FST := "real"::FST + syms : SYMTAB := empty()$SYMTAB + declare!(X,fortranReal()$FT,syms)$SYMTAB + yType : FT := construct([real]$UFST,["*"::Symbol],false)$FT + declare!(Y,yType,syms)$SYMTAB + Rep := FortranProgram(name,[real]$UFST,[X,Y],syms) + + retract(u:FRAC POLY INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:FRAC POLY INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:FRAC POLY FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:FRAC POLY FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:EXPR FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:EXPR FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:EXPR INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:EXPR INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:POLY FLOAT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:POLY FLOAT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + retract(u:POLY INT):$ == (retract(u)@FEXPR)::$ + retractIfCan(u:POLY INT):Union($,"failed") == + foo : Union(FEXPR,"failed") + foo := retractIfCan(u)$FEXPR + foo case "failed" => "failed" + (foo::FEXPR)::$ + + coerce(u:FEXPR):% == + expr : Expression MachineFloat := (u::Expression(MachineFloat))$FEXPR + (retractIfCan(u)@Union(MFLOAT,"failed"))$FEXPR case "failed" => + coerce(expr)$Rep + locals : SYMTAB := empty() + charType : FT := construct(["character"::FST]$UFST,[6::POLY(INT)],false)$FT + declare!([CHDUM1,CHDUM2,GOPT1,CHDUM,GOPT2],charType,locals)$SYMTAB + common1 := common(CD02EJ,[CHDUM1,CHDUM2,GOPT1] )$FC + common2 := common(AD02CJ,[CHDUM,GOPT2] )$FC + assign1 := assign(GOPT1,"NOGOPT")$FC + assign2 := assign(GOPT2,"NOGOPT")$FC + result := assign(name,expr)$FC + code : List FC := [common1,common2,assign1,assign2,result] + ([locals,code]$RSFC)::Rep + + coerce(c:List FortranCode):% == coerce(c)$Rep + + coerce(r:RSFC):% == coerce(r)$Rep + + coerce(c:FortranCode):% == coerce(c)$Rep + + coerce(u:%):OutputForm == coerce(u)$Rep + + outputAsFortran(u):Void == + p := checkPrecision()$NAGLinkSupportPackage + outputAsFortran(u)$Rep + p => restorePrecision()$NAGLinkSupportPackage + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<domain ASP1 Asp1>> +<<domain ASP10 Asp10>> +<<domain ASP12 Asp12>> +<<domain ASP19 Asp19>> +<<domain ASP20 Asp20>> +<<domain ASP24 Asp24>> +<<domain ASP27 Asp27>> +<<domain ASP28 Asp28>> +<<domain ASP29 Asp29>> +<<domain ASP30 Asp30>> +<<domain ASP31 Asp31>> +<<domain ASP33 Asp33>> +<<domain ASP34 Asp34>> +<<domain ASP35 Asp35>> +<<domain ASP4 Asp4>> +<<domain ASP41 Asp41>> +<<domain ASP42 Asp42>> +<<domain ASP49 Asp49>> +<<domain ASP50 Asp50>> +<<domain ASP55 Asp55>> +<<domain ASP6 Asp6>> +<<domain ASP7 Asp7>> +<<domain ASP73 Asp73>> +<<domain ASP74 Asp74>> +<<domain ASP77 Asp77>> +<<domain ASP78 Asp78>> +<<domain ASP8 Asp8>> +<<domain ASP80 Asp80>> +<<domain ASP9 Asp9>> +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |