diff options
author | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
---|---|---|
committer | dos-reis <gdr@axiomatics.org> | 2007-08-14 05:14:52 +0000 |
commit | ab8cc85adde879fb963c94d15675783f2cf4b183 (patch) | |
tree | c202482327f474583b750b2c45dedfc4e4312b1d /src/algebra/array1.spad.pamphlet | |
download | open-axiom-ab8cc85adde879fb963c94d15675783f2cf4b183.tar.gz |
Initial population.
Diffstat (limited to 'src/algebra/array1.spad.pamphlet')
-rw-r--r-- | src/algebra/array1.spad.pamphlet | 606 |
1 files changed, 606 insertions, 0 deletions
diff --git a/src/algebra/array1.spad.pamphlet b/src/algebra/array1.spad.pamphlet new file mode 100644 index 00000000..0812a849 --- /dev/null +++ b/src/algebra/array1.spad.pamphlet @@ -0,0 +1,606 @@ +\documentclass{article} +\usepackage{axiom} +\begin{document} +\title{\$SPAD/src/algebra array1.spad} +\author{Michael Monagan, Stephen Watt} +\maketitle +\begin{abstract} +\end{abstract} +\eject +\tableofcontents +\eject +\section{domain PRIMARR PrimitiveArray} +<<domain PRIMARR PrimitiveArray>>= +)abbrev domain PRIMARR PrimitiveArray +++ This provides a fast array type with no bound checking on elt's. +++ Minimum index is 0 in this type, cannot be changed +PrimitiveArray(S:Type): OneDimensionalArrayAggregate S == add + Qmax ==> QVMAXINDEX$Lisp + Qsize ==> QVSIZE$Lisp +-- Qelt ==> QVELT$Lisp +-- Qsetelt ==> QSETVELT$Lisp + Qelt ==> ELT$Lisp + Qsetelt ==> SETELT$Lisp + Qnew ==> GETREFV$Lisp + + #x == Qsize x + minIndex x == 0 + empty() == Qnew(0$Lisp) + new(n, x) == fill_!(Qnew n, x) + qelt(x, i) == Qelt(x, i) + elt(x:%, i:Integer) == Qelt(x, i) + qsetelt_!(x, i, s) == Qsetelt(x, i, s) + setelt(x:%, i:Integer, s:S) == Qsetelt(x, i, s) + fill_!(x, s) == (for i in 0..Qmax x repeat Qsetelt(x, i, s); x) + +@ +\section{PRIMARR.lsp BOOTSTRAP} +{\bf PRIMARR} depends on itself. +We need to break this cycle to build the algebra. So we keep a +cached copy of the translated {\bf PRIMARR} category which we can write +into the {\bf MID} directory. We compile the lisp code and copy the +{\bf PRIMARR.o} file to the {\bf OUT} directory. This is eventually +forcibly replaced by a recompiled version. + +Note that this code is not included in the generated catdef.spad file. + +<<PRIMARR.lsp BOOTSTRAP>>= + +(|/VERSIONCHECK| 2) + +(PUT (QUOTE |PRIMARR;#;$Nni;1|) (QUOTE |SPADreplace|) (QUOTE QVSIZE)) + +(DEFUN |PRIMARR;#;$Nni;1| (|x| |$|) (QVSIZE |x|)) + +(PUT (QUOTE |PRIMARR;minIndex;$I;2|) (QUOTE |SPADreplace|) (QUOTE (XLAM (|x|) 0))) + +(DEFUN |PRIMARR;minIndex;$I;2| (|x| |$|) 0) + +(PUT (QUOTE |PRIMARR;empty;$;3|) (QUOTE |SPADreplace|) (QUOTE (XLAM NIL (GETREFV 0)))) + +(DEFUN |PRIMARR;empty;$;3| (|$|) (GETREFV 0)) + +(DEFUN |PRIMARR;new;NniS$;4| (|n| |x| |$|) (SPADCALL (GETREFV |n|) |x| (QREFELT |$| 12))) + +(PUT (QUOTE |PRIMARR;qelt;$IS;5|) (QUOTE |SPADreplace|) (QUOTE ELT)) + +(DEFUN |PRIMARR;qelt;$IS;5| (|x| |i| |$|) (ELT |x| |i|)) + +(PUT (QUOTE |PRIMARR;elt;$IS;6|) (QUOTE |SPADreplace|) (QUOTE ELT)) + +(DEFUN |PRIMARR;elt;$IS;6| (|x| |i| |$|) (ELT |x| |i|)) + +(PUT (QUOTE |PRIMARR;qsetelt!;$I2S;7|) (QUOTE |SPADreplace|) (QUOTE SETELT)) + +(DEFUN |PRIMARR;qsetelt!;$I2S;7| (|x| |i| |s| |$|) (SETELT |x| |i| |s|)) + +(PUT (QUOTE |PRIMARR;setelt;$I2S;8|) (QUOTE |SPADreplace|) (QUOTE SETELT)) + +(DEFUN |PRIMARR;setelt;$I2S;8| (|x| |i| |s| |$|) (SETELT |x| |i| |s|)) + +(DEFUN |PRIMARR;fill!;$S$;9| (|x| |s| |$|) (PROG (|i| #1=#:G82338) (RETURN (SEQ (SEQ (LETT |i| 0 |PRIMARR;fill!;$S$;9|) (LETT #1# (QVMAXINDEX |x|) |PRIMARR;fill!;$S$;9|) G190 (COND ((QSGREATERP |i| #1#) (GO G191))) (SEQ (EXIT (SETELT |x| |i| |s|))) (LETT |i| (QSADD1 |i|) |PRIMARR;fill!;$S$;9|) (GO G190) G191 (EXIT NIL)) (EXIT |x|))))) + +(DEFUN |PrimitiveArray| (#1=#:G82348) (PROG NIL (RETURN (PROG (#2=#:G82349) (RETURN (COND ((LETT #2# (|lassocShiftWithFunction| (LIST (|devaluate| #1#)) (HGET |$ConstructorCache| (QUOTE |PrimitiveArray|)) (QUOTE |domainEqualList|)) |PrimitiveArray|) (|CDRwithIncrement| #2#)) ((QUOTE T) (|UNWIND-PROTECT| (PROG1 (|PrimitiveArray;| #1#) (LETT #2# T |PrimitiveArray|)) (COND ((NOT #2#) (HREM |$ConstructorCache| (QUOTE |PrimitiveArray|)))))))))))) + +(DEFUN |PrimitiveArray;| (|#1|) (PROG (|DV$1| |dv$| |$| #1=#:G82347 |pv$|) (RETURN (PROGN (LETT |DV$1| (|devaluate| |#1|) . #2=(|PrimitiveArray|)) (LETT |dv$| (LIST (QUOTE |PrimitiveArray|) |DV$1|) . #2#) (LETT |$| (GETREFV 35) . #2#) (QSETREFV |$| 0 |dv$|) (QSETREFV |$| 3 (LETT |pv$| (|buildPredVector| 0 0 (LIST (|HasCategory| |#1| (QUOTE (|SetCategory|))) (|HasCategory| |#1| (QUOTE (|ConvertibleTo| (|InputForm|)))) (LETT #1# (|HasCategory| |#1| (QUOTE (|OrderedSet|))) . #2#) (OR #1# (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (|HasCategory| (|Integer|) (QUOTE (|OrderedSet|))) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|)))) (OR (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) #1#) (AND (|HasCategory| |#1| (LIST (QUOTE |Evalable|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (|SetCategory|))))))) . #2#)) (|haddProp| |$ConstructorCache| (QUOTE |PrimitiveArray|) (LIST |DV$1|) (CONS 1 |$|)) (|stuffDomainSlots| |$|) (QSETREFV |$| 6 |#1|) |$|)))) + +(MAKEPROP (QUOTE |PrimitiveArray|) (QUOTE |infovec|) (LIST (QUOTE #(NIL NIL NIL NIL NIL NIL (|local| |#1|) (|NonNegativeInteger|) |PRIMARR;#;$Nni;1| (|Integer|) |PRIMARR;minIndex;$I;2| |PRIMARR;empty;$;3| |PRIMARR;fill!;$S$;9| |PRIMARR;new;NniS$;4| |PRIMARR;qelt;$IS;5| |PRIMARR;elt;$IS;6| |PRIMARR;qsetelt!;$I2S;7| |PRIMARR;setelt;$I2S;8| (|Mapping| 6 6 6) (|Boolean|) (|List| 6) (|Equation| 6) (|List| 21) (|Mapping| 19 6) (|Mapping| 19 6 6) (|UniversalSegment| 9) (|Void|) (|Mapping| 6 6) (|InputForm|) (|OutputForm|) (|String|) (|SingleInteger|) (|List| |$|) (|Union| 6 (QUOTE "failed")) (|List| 9))) (QUOTE #(|~=| 0 |swap!| 6 |sorted?| 13 |sort!| 24 |sort| 35 |size?| 46 |setelt| 52 |select| 66 |sample| 72 |reverse!| 76 |reverse| 81 |removeDuplicates| 86 |remove| 91 |reduce| 103 |qsetelt!| 124 |qelt| 131 |position| 137 |parts| 156 |new| 161 |more?| 167 |minIndex| 173 |min| 178 |merge| 184 |members| 197 |member?| 202 |maxIndex| 208 |max| 213 |map!| 219 |map| 225 |less?| 238 |latex| 244 |insert| 249 |indices| 263 |index?| 268 |hash| 274 |first| 279 |find| 284 |fill!| 290 |every?| 296 |eval| 302 |eq?| 328 |entry?| 334 |entries| 340 |empty?| 345 |empty| 350 |elt| 354 |delete| 373 |count| 385 |copyInto!| 397 |copy| 404 |convert| 409 |construct| 414 |concat| 419 |coerce| 442 |any?| 447 |>=| 453 |>| 459 |=| 465 |<=| 471 |<| 477 |#| 483)) (QUOTE ((|shallowlyMutable| . 0) (|finiteAggregate| . 0))) (CONS (|makeByteWordVec2| 7 (QUOTE (0 0 0 0 0 0 3 0 0 7 4 0 0 7 1 2 4))) (CONS (QUOTE #(|OneDimensionalArrayAggregate&| |FiniteLinearAggregate&| |LinearAggregate&| |IndexedAggregate&| |Collection&| |HomogeneousAggregate&| |OrderedSet&| |Aggregate&| |EltableAggregate&| |Evalable&| |SetCategory&| NIL NIL |InnerEvalable&| NIL NIL |BasicType&|)) (CONS (QUOTE #((|OneDimensionalArrayAggregate| 6) (|FiniteLinearAggregate| 6) (|LinearAggregate| 6) (|IndexedAggregate| 9 6) (|Collection| 6) (|HomogeneousAggregate| 6) (|OrderedSet|) (|Aggregate|) (|EltableAggregate| 9 6) (|Evalable| 6) (|SetCategory|) (|Type|) (|Eltable| 9 6) (|InnerEvalable| 6 6) (|CoercibleTo| 29) (|ConvertibleTo| 28) (|BasicType|))) (|makeByteWordVec2| 34 (QUOTE (2 1 19 0 0 1 3 0 26 0 9 9 1 1 3 19 0 1 2 0 19 24 0 1 1 3 0 0 1 2 0 0 24 0 1 1 3 0 0 1 2 0 0 24 0 1 2 0 19 0 7 1 3 0 6 0 25 6 1 3 0 6 0 9 6 17 2 0 0 23 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 2 1 0 6 0 1 2 0 0 23 0 1 4 1 6 18 0 6 6 1 3 0 6 18 0 6 1 2 0 6 18 0 1 3 0 6 0 9 6 16 2 0 6 0 9 14 2 1 9 6 0 1 3 1 9 6 0 9 1 2 0 9 23 0 1 1 0 20 0 1 2 0 0 7 6 13 2 0 19 0 7 1 1 5 9 0 10 2 3 0 0 0 1 2 3 0 0 0 1 3 0 0 24 0 0 1 1 0 20 0 1 2 1 19 6 0 1 1 5 9 0 1 2 3 0 0 0 1 2 0 0 27 0 1 3 0 0 18 0 0 1 2 0 0 27 0 1 2 0 19 0 7 1 1 1 30 0 1 3 0 0 0 0 9 1 3 0 0 6 0 9 1 1 0 34 0 1 2 0 19 9 0 1 1 1 31 0 1 1 5 6 0 1 2 0 33 23 0 1 2 0 0 0 6 12 2 0 19 23 0 1 3 6 0 0 20 20 1 2 6 0 0 21 1 3 6 0 0 6 6 1 2 6 0 0 22 1 2 0 19 0 0 1 2 1 19 6 0 1 1 0 20 0 1 1 0 19 0 1 0 0 0 11 2 0 0 0 25 1 2 0 6 0 9 15 3 0 6 0 9 6 1 2 0 0 0 9 1 2 0 0 0 25 1 2 1 7 6 0 1 2 0 7 23 0 1 3 0 0 0 0 9 1 1 0 0 0 1 1 2 28 0 1 1 0 0 20 1 1 0 0 32 1 2 0 0 6 0 1 2 0 0 0 0 1 2 0 0 0 6 1 1 1 29 0 1 2 0 19 23 0 1 2 3 19 0 0 1 2 3 19 0 0 1 2 1 19 0 0 1 2 3 19 0 0 1 2 3 19 0 0 1 1 0 7 0 8)))))) (QUOTE |lookupComplete|))) +@ +\section{package PRIMARR2 PrimitiveArrayFunctions2} +<<package PRIMARR2 PrimitiveArrayFunctions2>>= +)abbrev package PRIMARR2 PrimitiveArrayFunctions2 +++ This package provides tools for operating on primitive arrays +++ with unary and binary functions involving different underlying types +PrimitiveArrayFunctions2(A, B): Exports == Implementation where + A, B: Type + + VA ==> PrimitiveArray A + VB ==> PrimitiveArray B + O2 ==> FiniteLinearAggregateFunctions2(A, VA, B, VB) + Exports ==> with + scan : ((A, B) -> B, VA, B) -> VB + ++ scan(f,a,r) successively applies + ++ \spad{reduce(f,x,r)} to more and more leading sub-arrays + ++ x of primitive array \spad{a}. + ++ More precisely, if \spad{a} is \spad{[a1,a2,...]}, then + ++ \spad{scan(f,a,r)} returns + ++ \spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}. + reduce : ((A, B) -> B, VA, B) -> B + ++ reduce(f,a,r) applies function f to each + ++ successive element of the + ++ primitive array \spad{a} and an accumulant initialized to r. + ++ For example, + ++ \spad{reduce(_+$Integer,[1,2,3],0)} + ++ does \spad{3+(2+(1+0))}. Note: third argument r + ++ may be regarded as the + ++ identity element for the function f. + map : (A -> B, VA) -> VB + ++ map(f,a) applies function f to each member of primitive array + ++ \spad{a} resulting in a new primitive array over a + ++ possibly different underlying domain. + + Implementation ==> add + map(f, v) == map(f, v)$O2 + scan(f, v, b) == scan(f, v, b)$O2 + reduce(f, v, b) == reduce(f, v, b)$O2 + +@ +\section{domain TUPLE Tuple} +<<domain TUPLE Tuple>>= +)abbrev domain TUPLE Tuple +++ This domain is used to interface with the interpreter's notion +++ of comma-delimited sequences of values. +Tuple(S:Type): CoercibleTo(PrimitiveArray S) with + coerce: PrimitiveArray S -> % + ++ coerce(a) makes a tuple from primitive array a + select: (%, NonNegativeInteger) -> S + ++ select(x,n) returns the n-th element of tuple x. + ++ tuples are 0-based + length: % -> NonNegativeInteger + ++ length(x) returns the number of elements in tuple x + if S has SetCategory then SetCategory + == add + Rep := Record(len : NonNegativeInteger, elts : PrimitiveArray S) + + coerce(x: PrimitiveArray S): % == [#x, x] + coerce(x:%): PrimitiveArray(S) == x.elts + length x == x.len + + select(x, n) == + n >= x.len => error "Index out of bounds" + x.elts.n + + if S has SetCategory then + x = y == (x.len = y.len) and (x.elts =$PrimitiveArray(S) y.elts) + coerce(x : %): OutputForm == + paren [(x.elts.i)::OutputForm + for i in minIndex x.elts .. maxIndex x.elts]$List(OutputForm) + +@ +\section{domain IFARRAY IndexedFlexibleArray} +<<domain IFARRAY IndexedFlexibleArray>>= +)abbrev domain IFARRAY IndexedFlexibleArray +++ Author: Michael Monagan July/87, modified SMW June/91 +++ A FlexibleArray is the notion of an array intended to allow for growth +++ at the end only. Hence the following efficient operations +++ \spad{append(x,a)} meaning append item x at the end of the array \spad{a} +++ \spad{delete(a,n)} meaning delete the last item from the array \spad{a} +++ Flexible arrays support the other operations inherited from +++ \spadtype{ExtensibleLinearAggregate}. However, these are not efficient. +++ Flexible arrays combine the \spad{O(1)} access time property of arrays +++ with growing and shrinking at the end in \spad{O(1)} (average) time. +++ This is done by using an ordinary array which may have zero or more +++ empty slots at the end. When the array becomes full it is copied +++ into a new larger (50% larger) array. Conversely, when the array +++ becomes less than 1/2 full, it is copied into a smaller array. +++ Flexible arrays provide for an efficient implementation of many +++ data structures in particular heaps, stacks and sets. + +IndexedFlexibleArray(S:Type, mn: Integer): Exports == Implementation where + A ==> PrimitiveArray S + I ==> Integer + N ==> NonNegativeInteger + U ==> UniversalSegment Integer + Exports == + Join(OneDimensionalArrayAggregate S,ExtensibleLinearAggregate S) with + flexibleArray : List S -> % + ++ flexibleArray(l) creates a flexible array from the list of elements l + physicalLength : % -> NonNegativeInteger + ++ physicalLength(x) returns the number of elements x can accomodate before growing + physicalLength_!: (%, I) -> % + ++ physicalLength!(x,n) changes the physical length of x to be n and returns the new array. + shrinkable: Boolean -> Boolean + ++ shrinkable(b) sets the shrinkable attribute of flexible arrays to b and returns the previous value + Implementation == add + Rep := Record(physLen:I, logLen:I, f:A) + shrinkable? : Boolean := true + growAndFill : (%, I, S) -> % + growWith : (%, I, S) -> % + growAdding : (%, I, %) -> % + shrink: (%, I) -> % + newa : (N, A) -> A + + physicalLength(r) == (r.physLen) pretend NonNegativeInteger + physicalLength_!(r, n) == + r.physLen = 0 => error "flexible array must be non-empty" + growWith(r, n, r.f.0) + + empty() == [0, 0, empty()] + #r == (r.logLen)::N + fill_!(r, x) == (fill_!(r.f, x); r) + maxIndex r == r.logLen - 1 + mn + minIndex r == mn + new(n, a) == [n, n, new(n, a)] + + shrinkable(b) == + oldval := shrinkable? + shrinkable? := b + oldval + + flexibleArray l == + n := #l + n = 0 => empty() + x := l.1 + a := new(n,x) + for i in mn + 1..mn + n-1 for y in rest l repeat a.i := y + a + + -- local utility operations + newa(n, a) == + zero? n => empty() + new(n, a.0) + + growAdding(r, b, s) == + b = 0 => r + #r > 0 => growAndFill(r, b, (r.f).0) + #s > 0 => growAndFill(r, b, (s.f).0) + error "no default filler element" + + growAndFill(r, b, x) == + (r.logLen := r.logLen + b) <= r.physLen => r + -- enlarge by 50% + b + n := r.physLen + r.physLen quo 2 + 1 + if r.logLen > n then n := r.logLen + growWith(r, n, x) + + growWith(r, n, x) == + y := new(n::N, x)$PrimitiveArray(S) + a := r.f + for k in 0 .. r.physLen-1 repeat y.k := a.k + r.physLen := n + r.f := y + r + + shrink(r, i) == + r.logLen := r.logLen - i + negative?(n := r.logLen) => error "internal bug in flexible array" + 2*n+2 > r.physLen => r + not shrinkable? => r + if n < r.logLen then error "cannot shrink flexible array to indicated size" + n = 0 => empty() + r.physLen := n + y := newa(n::N, a := r.f) + for k in 0 .. n-1 repeat y.k := a.k + r.f := y + r + + copy r == + n := #r + a := r.f + v := newa(n, a := r.f) + for k in 0..n-1 repeat v.k := a.k + [n, n, v] + + + elt(r:%, i:I) == + i < mn or i >= r.logLen + mn => + error "index out of range" + r.f.(i-mn) + + setelt(r:%, i:I, x:S) == + i < mn or i >= r.logLen + mn => + error "index out of range" + r.f.(i-mn) := x + + -- operations inherited from extensible aggregate + merge(g, a, b) == merge_!(g, copy a, b) + concat(x:S, r:%) == insert_!(x, r, mn) + + concat_!(r:%, x:S) == + growAndFill(r, 1, x) + r.f.(r.logLen-1) := x + r + + concat_!(a:%, b:%) == + if eq?(a, b) then b := copy b + n := #a + growAdding(a, #b, b) + copyInto_!(a, b, n + mn) + + remove_!(g:(S->Boolean), a:%) == + k:I := 0 + for i in 0..maxIndex a - mn repeat + if not g(a.i) then (a.k := a.i; k := k+1) + shrink(a, #a - k) + + delete_!(r:%, i1:I) == + i := i1 - mn + i < 0 or i > r.logLen => error "index out of range" + for k in i..r.logLen-2 repeat r.f.k := r.f.(k+1) + shrink(r, 1) + + delete_!(r:%, i:U) == + l := lo i - mn; m := maxIndex r - mn + h := (hasHi i => hi i - mn; m) + l < 0 or h > m => error "index out of range" + for j in l.. for k in h+1..m repeat r.f.j := r.f.k + shrink(r, max(0,h-l+1)) + + insert_!(x:S, r:%, i1:I):% == + i := i1 - mn + n := r.logLen + i < 0 or i > n => error "index out of range" + growAndFill(r, 1, x) + for k in n-1 .. i by -1 repeat r.f.(k+1) := r.f.k + r.f.i := x + r + + insert_!(a:%, b:%, i1:I):% == + i := i1 - mn + if eq?(a, b) then b := copy b + m := #a; n := #b + i < 0 or i > n => error "index out of range" + growAdding(b, m, a) + for k in n-1 .. i by -1 repeat b.f.(m+k) := b.f.k + for k in m-1 .. 0 by -1 repeat b.f.(i+k) := a.f.k + b + + merge_!(g, a, b) == + m := #a; n := #b; growAdding(a, n, b) + for i in m-1..0 by -1 for j in m+n-1.. by -1 repeat a.f.j := a.f.i + i := n; j := 0 + for k in 0.. while i < n+m and j < n repeat + if g(a.f.i,b.f.j) then (a.f.k := a.f.i; i := i+1) + else (a.f.k := b.f.j; j := j+1) + for k in k.. for j in j..n-1 repeat a.f.k := b.f.j + a + + select_!(g:(S->Boolean), a:%) == + k:I := 0 + for i in 0..maxIndex a - mn repeat if g(a.f.i) then (a.f.k := a.f.i;k := k+1) + shrink(a, #a - k) + + if S has SetCategory then + removeDuplicates_! a == + ct := #a + ct < 2 => a + + i := mn + nlim := mn + ct + nlim0 := nlim + while i < nlim repeat + j := i+1 + for k in j..nlim-1 | a.k ^= a.i repeat + a.j := a.k + j := j+1 + nlim := j + i := i+1 + nlim ^= nlim0 => delete_!(a, i..) + a + +@ +\section{domain FARRAY FlexibleArray} +<<domain FARRAY FlexibleArray>>= +)abbrev domain FARRAY FlexibleArray +++ A FlexibleArray is the notion of an array intended to allow for growth +++ at the end only. Hence the following efficient operations +++ \spad{append(x,a)} meaning append item x at the end of the array \spad{a} +++ \spad{delete(a,n)} meaning delete the last item from the array \spad{a} +++ Flexible arrays support the other operations inherited from +++ \spadtype{ExtensibleLinearAggregate}. However, these are not efficient. +++ Flexible arrays combine the \spad{O(1)} access time property of arrays +++ with growing and shrinking at the end in \spad{O(1)} (average) time. +++ This is done by using an ordinary array which may have zero or more +++ empty slots at the end. When the array becomes full it is copied +++ into a new larger (50% larger) array. Conversely, when the array +++ becomes less than 1/2 full, it is copied into a smaller array. +++ Flexible arrays provide for an efficient implementation of many +++ data structures in particular heaps, stacks and sets. + +FlexibleArray(S: Type) == Implementation where + ARRAYMININDEX ==> 1 -- if you want to change this, be my guest + Implementation ==> IndexedFlexibleArray(S, ARRAYMININDEX) +-- Join(OneDimensionalArrayAggregate S, ExtensibleLinearAggregate S) + +@ +\section{domain IARRAY1 IndexedOneDimensionalArray} +<<domain IARRAY1 IndexedOneDimensionalArray>>= +)abbrev domain IARRAY1 IndexedOneDimensionalArray +++ Author Micheal Monagan Aug/87 +++ This is the basic one dimensional array data type. + +IndexedOneDimensionalArray(S:Type, mn:Integer): + OneDimensionalArrayAggregate S == add + Qmax ==> QVMAXINDEX$Lisp + Qsize ==> QVSIZE$Lisp +-- Qelt ==> QVELT$Lisp +-- Qsetelt ==> QSETVELT$Lisp + Qelt ==> ELT$Lisp + Qsetelt ==> SETELT$Lisp +-- Qelt1 ==> QVELT_-1$Lisp +-- Qsetelt1 ==> QSETVELT_-1$Lisp + Qnew ==> GETREFV$Lisp + I ==> Integer + + #x == Qsize x + fill_!(x, s) == (for i in 0..Qmax x repeat Qsetelt(x, i, s); x) + minIndex x == mn + + empty() == Qnew(0$Lisp) + new(n, s) == fill_!(Qnew n,s) + + map_!(f, s1) == + n:Integer := Qmax(s1) + n < 0 => s1 + for i in 0..n repeat Qsetelt(s1, i, f(Qelt(s1,i))) + s1 + + map(f, s1) == + n:Integer := Qmax(s1) + n < 0 => s1 + ss2:% := Qnew(n+1) + for i in 0..n repeat Qsetelt(ss2, i, f(Qelt(s1,i))) + ss2 + + map(f, a, b) == + maxind:Integer := min(Qmax a, Qmax b) + maxind < 0 => empty() + c:% := Qnew(maxind+1) + for i in 0..maxind repeat + Qsetelt(c, i, f(Qelt(a,i),Qelt(b,i))) + c + + if zero? mn then + qelt(x, i) == Qelt(x, i) + qsetelt_!(x, i, s) == Qsetelt(x, i, s) + + elt(x:%, i:I) == + negative? i or i > maxIndex(x) => error "index out of range" + qelt(x, i) + + setelt(x:%, i:I, s:S) == + negative? i or i > maxIndex(x) => error "index out of range" + qsetelt_!(x, i, s) + +-- else if one? mn then + else if (mn = 1) then + maxIndex x == Qsize x + qelt(x, i) == Qelt(x, i-1) + qsetelt_!(x, i, s) == Qsetelt(x, i-1, s) + + elt(x:%, i:I) == + QSLESSP(i,1$Lisp)$Lisp or QSLESSP(Qsize x,i)$Lisp => + error "index out of range" + Qelt(x, i-1) + + setelt(x:%, i:I, s:S) == + QSLESSP(i,1$Lisp)$Lisp or QSLESSP(Qsize x,i)$Lisp => + error "index out of range" + Qsetelt(x, i-1, s) + + else + qelt(x, i) == Qelt(x, i - mn) + qsetelt_!(x, i, s) == Qsetelt(x, i - mn, s) + + elt(x:%, i:I) == + i < mn or i > maxIndex(x) => error "index out of range" + qelt(x, i) + + setelt(x:%, i:I, s:S) == + i < mn or i > maxIndex(x) => error "index out of range" + qsetelt_!(x, i, s) + +@ +\section{domain ARRAY1 OneDimensionalArray} +<<domain ARRAY1 OneDimensionalArray>>= +)abbrev domain ARRAY1 OneDimensionalArray +++ This is the domain of 1-based one dimensional arrays + +OneDimensionalArray(S:Type): Exports == Implementation where + ARRAYMININDEX ==> 1 -- if you want to change this, be my guest + Exports == OneDimensionalArrayAggregate S with + oneDimensionalArray: List S -> % + ++ oneDimensionalArray(l) creates an array from a list of elements l + oneDimensionalArray: (NonNegativeInteger, S) -> % + ++ oneDimensionalArray(n,s) creates an array from n copies of element s + Implementation == IndexedOneDimensionalArray(S, ARRAYMININDEX) add + oneDimensionalArray(u) == + n := #u + n = 0 => empty() + a := new(n, first u) + for i in 2..n for x in rest u repeat a.i := x + a + oneDimensionalArray(n,s) == new(n,s) + +@ +\section{package ARRAY12 OneDimensionalArrayFunctions2} +<<package ARRAY12 OneDimensionalArrayFunctions2>>= +)abbrev package ARRAY12 OneDimensionalArrayFunctions2 +++ This package provides tools for operating on one-dimensional arrays +++ with unary and binary functions involving different underlying types +OneDimensionalArrayFunctions2(A, B): Exports == Implementation where + A, B: Type + + VA ==> OneDimensionalArray A + VB ==> OneDimensionalArray B + O2 ==> FiniteLinearAggregateFunctions2(A, VA, B, VB) + + Exports ==> with + scan : ((A, B) -> B, VA, B) -> VB + ++ scan(f,a,r) successively applies + ++ \spad{reduce(f,x,r)} to more and more leading sub-arrays + ++ x of one-dimensional array \spad{a}. + ++ More precisely, if \spad{a} is \spad{[a1,a2,...]}, then + ++ \spad{scan(f,a,r)} returns + ++ \spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}. + reduce : ((A, B) -> B, VA, B) -> B + ++ reduce(f,a,r) applies function f to each + ++ successive element of the + ++ one-dimensional array \spad{a} and an accumulant initialized to r. + ++ For example, + ++ \spad{reduce(_+$Integer,[1,2,3],0)} + ++ does \spad{3+(2+(1+0))}. Note: third argument r + ++ may be regarded as the + ++ identity element for the function f. + map : (A -> B, VA) -> VB + ++ map(f,a) applies function f to each member of one-dimensional array + ++ \spad{a} resulting in a new one-dimensional array over a + ++ possibly different underlying domain. + + Implementation ==> add + map(f, v) == map(f, v)$O2 + scan(f, v, b) == scan(f, v, b)$O2 + reduce(f, v, b) == reduce(f, v, b)$O2 + +@ +\section{License} +<<license>>= +--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. +--All rights reserved. +-- +--Redistribution and use in source and binary forms, with or without +--modification, are permitted provided that the following conditions are +--met: +-- +-- - Redistributions of source code must retain the above copyright +-- notice, this list of conditions and the following disclaimer. +-- +-- - Redistributions in binary form must reproduce the above copyright +-- notice, this list of conditions and the following disclaimer in +-- the documentation and/or other materials provided with the +-- distribution. +-- +-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the +-- names of its contributors may be used to endorse or promote products +-- derived from this software without specific prior written permission. +-- +--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS +--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED +--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A +--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER +--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, +--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, +--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR +--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF +--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING +--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS +--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +@ +<<*>>= +<<license>> + +<<domain PRIMARR PrimitiveArray>> +<<package PRIMARR2 PrimitiveArrayFunctions2>> +<<domain TUPLE Tuple>> +<<domain IFARRAY IndexedFlexibleArray>> +<<domain FARRAY FlexibleArray>> +<<domain IARRAY1 IndexedOneDimensionalArray>> +<<domain ARRAY1 OneDimensionalArray>> +<<package ARRAY12 OneDimensionalArrayFunctions2>> + +--%% TupleFunctions2 +--TupleFunctions2(A:Type, B:Type): with +-- map: (A -> B, Tuple A) -> Tuple B +-- == add +-- map(f, t) == +-- p:PrimitiveArray(B) := new length t +-- for i in minIndex p .. maxIndex p repeat +-- p.i := f select(t, i) +-- p::Tuple(B) + +@ +\eject +\begin{thebibliography}{99} +\bibitem{1} nothing +\end{thebibliography} +\end{document} |