aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authordos-reis <gdr@axiomatics.org>2010-06-05 16:45:11 +0000
committerdos-reis <gdr@axiomatics.org>2010-06-05 16:45:11 +0000
commit4f5eed96341cffc2c2e783b99cd61dde37570230 (patch)
tree1f878f1853d3e4ccd59e2d73663e70c9e9be1f47
parent903aea5b9f16651e41527340c551d088defaebaf (diff)
downloadopen-axiom-4f5eed96341cffc2c2e783b99cd61dde37570230.tar.gz
Minor cleanup
-rw-r--r--src/algebra/vector.spad.pamphlet38
1 files changed, 18 insertions, 20 deletions
diff --git a/src/algebra/vector.spad.pamphlet b/src/algebra/vector.spad.pamphlet
index e11e41e9..8555d05d 100644
--- a/src/algebra/vector.spad.pamphlet
+++ b/src/algebra/vector.spad.pamphlet
@@ -330,16 +330,13 @@ DirectProductCategory(dim:NonNegativeInteger, R:Type): Category ==
DirectProduct(dim:NonNegativeInteger, R:Type):
DirectProductCategory(dim, R) == Vector R add
-
- Rep := Vector R
-
- coerce(z:%):Vector(R) == copy(z)$Rep pretend Vector(R)
- coerce(r:R):% == new(dim, r)$Rep
+ coerce(z:%):Vector(R) == copy rep z
+ coerce(r:R):% == per new(dim, r)$Vector(R)
parts x == VEC2LIST(x)$Lisp
directProduct z ==
- size?(z, dim) => copy(z)$Rep
+ size?(z, dim) => per copy z
error "Not of the correct length"
@@ -347,7 +344,7 @@ DirectProduct(dim:NonNegativeInteger, R:Type):
same?: % -> Boolean
same? z == every?(#1 = z(minIndex z), z)
- x = y == and/[qelt(x,i)$Rep = qelt(y,i)$Rep for i in 1..dim]
+ x = y == and/[qelt(rep x,i) = qelt(rep y,i) for i in 1..dim]
retract(z:%):R ==
same? z => z(minIndex z)
@@ -359,42 +356,42 @@ DirectProduct(dim:NonNegativeInteger, R:Type):
if R has AbelianSemiGroup then
- u:% + v:% == map(_+ , u, v)$Rep
+ u:% + v:% == per map(_+ , rep u, rep v)
if R has AbelianMonoid then
- 0 == zero(dim)$Vector(R) pretend %
+ 0 == per zero(dim)$Vector(R)
if R has Monoid then
- 1 == new(dim, 1)$Vector(R) pretend %
- u:% * r:R == map(#1 * r, u)
- r:R * u:% == map(r * #1, u)
- x:% * y:% == [x.i * y.i for i in 1..dim]$Vector(R) pretend %
+ 1 == per new(dim, 1)$Vector(R)
+ u:% * r:R == per map(#1 * r, rep u)
+ r:R * u:% == per map(r * #1, rep u)
+ x:% * y:% == per [x.i * y.i for i in 1..dim]$Vector(R)
if R has CancellationAbelianMonoid then
subtractIfCan(u:%, v:%):Union(%,"failed") ==
w := new(dim,0)$Vector(R)
for i in 1..dim repeat
- (c := subtractIfCan(qelt(u, i)$Rep, qelt(v,i)$Rep)) case "failed" =>
+ (c := subtractIfCan(qelt(rep u, i), qelt(rep v,i))) case "failed" =>
return "failed"
- qsetelt!(w, i, c::R)$Rep
- w pretend %
+ qsetelt!(w, i, c::R)
+ per w
if R has Ring then
- u:% * v:% == map(_* , u, v)$Rep
+ u:% * v:% == per map(_* ,rep u,rep v)
recip z ==
w := new(dim,0)$Vector(R)
for i in minIndex w .. maxIndex w repeat
(u := recip qelt(z, i)) case "failed" => return "failed"
qsetelt!(w, i, u::R)
- w pretend %
+ per w
unitVector i ==
v:= new(dim,0)$Vector(R)
v.i := 1
- v pretend %
+ per v
if R has OrderedSet then
x < y ==
@@ -403,7 +400,8 @@ DirectProduct(dim:NonNegativeInteger, R:Type):
qelt(x,i) > qelt(y,i) => return false
false
- if R has OrderedAbelianMonoidSup then sup(x, y) == map(sup, x, y)
+ if R has OrderedAbelianMonoidSup then
+ sup(x,y) == per map(sup, rep x, rep y)
@
\section{package DIRPROD2 DirectProductFunctions2}