1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
program mendeleev
implicit none
character(len=2), dimension(0:118), parameter :: ELEMENTS = (/ "? ", &
"Ac", "Ag", "Al", "Am", "Ar", "As", "At", "Au", "B ", "Ba", "Be", "Bh", &
"Bi", "Bk", "Br", "C ", "Ca", "Cd", "Ce", "Cf", "Cl", "Cm", "Cn", "Co", &
"Cr", "Cs", "Cu", "Db", "Ds", "Dy", "Er", "Es", "Eu", "F ", "Fe", "Fl", &
"Fm", "Fr", "Ga", "Gd", "Ge", "H ", "He", "Hf", "Hg", "Ho", "Hs", "I ", &
"In", "Ir", "K ", "Kr", "La", "Li", "Lr", "Lu", "Lv", "Mc", "Md", "Mg", &
"Mn", "Mo", "Mt", "N ", "Na", "Nb", "Nd", "Ne", "Nh", "Ni", "No", "Np", &
"O ", "Og", "Os", "P ", "Pa", "Pb", "Pd", "Pm", "Po", "Pr", "Pt", "Pu", &
"Ra", "Rb", "Re", "Rf", "Rg", "Rh", "Rn", "Ru", "S ", "Sb", "Sc", "Se", &
"Sg", "Si", "Sm", "Sn", "Sr", "Ta", "Tb", "Tc", "Te", "Th", "Ti", "Tl", &
"Tm", "Ts", "U ", "V ", "W ", "Xe", "Y ", "Yb", "Zn", "Zr" /)
type :: element_t
integer :: eid = 0
character(len=:), pointer :: tail => null()
type(element_t), pointer :: sibs => null()
type(element_t), pointer :: next => null()
end type element_t
type(element_t), pointer :: root
character(len=:), pointer :: word
integer, dimension(:), allocatable :: formula
integer :: length, argc, i
argc = command_argument_count()
do i = 1, argc
call get_command_argument(i, length=length)
allocate(character(len=length) :: word)
call get_command_argument(i, value=word)
write (*, "(A, ':')") word
if (length > 0) then
root => explode(word)
allocate(formula(length))
call print_plain(root, formula, 1)
deallocate(formula)
call free_elements(root)
end if
deallocate(word)
end do
contains
pure recursive subroutine free_elements(root)
type(element_t), pointer, intent(in out) :: root
type(element_t), pointer :: sibs
do while (associated(root))
if (associated(root%next)) call free_elements(root%next)
sibs => root%sibs
deallocate(root)
root => sibs
end do
end subroutine free_elements
pure integer function tolower(c)
character(len=1), intent(in) :: c
tolower = ior(32, iachar(c))
end function tolower
pure subroutine search(start, end, sh, c)
integer, intent(in out) :: start, end
integer, intent(in) :: sh
character(len=1), intent(in) :: c
integer :: l, m, u, c_
c_ = tolower(c)
u = end
l = start
do while (l < u)
m = (u + l) / 2
if (tolower(ELEMENTS(m)(sh:sh)) < c_) then
l = m + 1
else
u = m
endif
end do
if (l == end) then
end = 0
return
end if
if (tolower(ELEMENTS(l)(sh:sh)) /= c_) then
end = 0
return
end if
u = end
start = l
do while (l < u)
m = (u + l) / 2
if (c_ < tolower(ELEMENTS(m)(sh:sh))) then
u = m
else
l = m + 1
endif
end do
end = u
end subroutine search
function split(tail) result(head)
character(len=:), pointer, intent(in) :: tail
type(element_t), pointer :: head, last, el
integer :: start, end, sh
head => null()
last => null()
start = 1
end = ubound(ELEMENTS, 1) + 1
do sh = 1, len(tail)
call search(start, end, sh, tail(sh:sh))
if (start >= end) exit
if (sh == len_trim(ELEMENTS(start))) then
allocate(el)
if (associated(last)) then
last%sibs => el
else
head => el
end if
last => el
last%eid = start
last%tail => tail(sh+1:)
start = start + 1
end if
end do
if (.not. associated(head)) then
allocate(head)
head%tail => tail(2:)
end if
end function split
recursive function explode(tail) result(root)
character(len=:), pointer, intent(in) :: tail
type(element_t), pointer :: root, el
root => split(tail)
el => root
do while (associated(el))
if (0 < len(el%tail)) el%next => explode(el%tail)
el => el%sibs
end do
end function explode
recursive subroutine print_plain(tree, formula, n)
type(element_t), pointer, intent(in) :: tree
integer, dimension(:), intent(in out) :: formula
integer, value :: n
type(element_t), pointer :: el
integer :: i
el => tree
do while (associated(el))
formula(n) = el%eid
if (associated(el%next)) then
call print_plain(el%next, formula, n+1)
else
do i = 1, n
write (*, "(' ', A)", advance="no") trim(ELEMENTS(formula(i)))
end do
write (*, "()")
end if
el => el%sibs
end do
end subroutine print_plain
end program mendeleev
|